Skip to main content

Advertisement

Log in

Cell source, differentiation, functional stimulation, and potential application of human thermogenic adipocytes in vitro

  • Mini Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 05 October 2017

This article has been updated

Abstract

Recent investigations have showed that the functional thermogenic adipocytes are present in both infants and adult humans. Accumulating evidence suggests that the coexistence of classical and inducible brown (brite) adipocytes in humans at adulthood and these adipocytes function to generate heat from energy resulting in reducing body fat and improving glucose metabolism. Human thermogenic adipocytes can be differentiated in vitro from stem cells, cell lines, or adipose stromal vascular fraction. Pre-activated human brite adipocytes in vitro can maintain their thermogenic function in normal or obese immunodeficient mice; therefore, they improve glucose homeostasis and reduce fat mass in obese animals. These key findings have opened a new door to use in vitro thermogenic adipocytes as a cell therapy to prevent obesity and related disorders. Thus, this paper intends to highlight our knowledge in aspects of in vitro human brite/brown adipocytes for the further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 05 October 2017

    Volume 73 issue 3 was published with an incorrect cover date. Correct is August 2017. The Publisher apologizes for this mistake and all related inconveniences caused by this.

References

  1. Atit R et al (2006) β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 296(1):164–176

    Article  CAS  PubMed  Google Scholar 

  2. Barbara C, Nedergaarb J (2004) Brown adipose tissue: function and physiological significance. Physiol rev 84(1):277–359

    Article  Google Scholar 

  3. Barclay JL et al (2015) Effects of glucocorticoids on human brown adipocytes. J Endocrinol 224(2):139–147

    Article  CAS  PubMed  Google Scholar 

  4. Barquissau V et al (2016) White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Molecular Metabolism 5(5):352–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bordicchia M et al (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 122(3):1022–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brydon L et al (2001) Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology 142(10):4264–4271

    Article  CAS  PubMed  Google Scholar 

  7. Cantó C et al (2012) The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15(6):838–847

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chu D-T, Tao Y (2017) Human thermogenic adipocytes: a reflection on types of adipocyte, developmental origin, and potential application. J Physiol Biochem 73(1):1–4

    Article  CAS  PubMed  Google Scholar 

  9. Chu D-T et al (2014) Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. J Biol Chem 289(26):18478–18488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chu D-T, Tao Y, Taskén K (2017a) OPA1 in lipid metabolism: function of OPA1 in lipolysis and thermogenesis of adipocytes. Horm Metab res 49(4):276–285

    Article  CAS  PubMed  Google Scholar 

  11. Chu D-T et al (2017b) C57BL/6J mice as a polygenic developmental model of diet-induced obesity. Physiological Reports 5(7):e13093

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chu-Dinh T, Chu DT (2014) 4-1BB and the epigenetic regulations of this molecule. Medical Epigenetics 2(3):80–85

    Article  Google Scholar 

  13. Cunningham S et al (1985) The characterization and energetic potential of brown adipose tissue in man. Clin Sci 69(3):343–348

    Article  CAS  PubMed  Google Scholar 

  14. Cypess AM et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J med 360(15):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cypess AM et al (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat med 19(5):635–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cypess AM et al (2015) Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21(1):33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Digby JE et al (1998) Thiazolidinedione exposure increases the expression of uncoupling protein 1 in cultured human preadipocytes. Diabetes 47(1):138–141

    Article  CAS  PubMed  Google Scholar 

  18. Elabd C et al (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27(11):2753–2760

    Article  CAS  PubMed  Google Scholar 

  19. Fischer-Posovszky P et al (2008) Human SGBS cells—a unique tool for studies of human fat cell biology. Obesity Facts 1(4):184–189

    Article  PubMed  Google Scholar 

  20. Fu T et al (2014) MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function. Mol Cell Biol 34(22):4130–4142

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gesta S, Tseng Y-H, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131(2):242–256

    Article  CAS  PubMed  Google Scholar 

  22. Ghandour RA et al (2016) IP-receptor and PPARs trigger the conversion of human white to brite adipocyte induced by carbaprostacyclin. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1861(4):285–293

    Article  CAS  Google Scholar 

  23. Giroud M et al (2016) Let-7i-5p represses brite adipocyte function in mice and humans. Scientific Reports 6:28613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guennoun A et al (2015) Comprehensive molecular characterization of human adipocytes reveals a transient brown phenotype. J Transl med 13(1):135

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hafner A-L et al (2016) Brown-like adipose progenitors derived from human induced pluripotent stem cells: identification of critical pathways governing their adipogenic capacity. Scientific Reports 6:32490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat med 19(10):1252–1263

    Article  CAS  PubMed  Google Scholar 

  27. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nature reviews. Molecular Cell Biology 13(4):225–238

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jespersen, Naja Z., et al., A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab, 2013. 17(5): p. 798–805.

  29. Jockers R et al (1998) Desensitization of the β-adrenergic response in human brown adipocytes. Endocrinology 139(6):2676–2684

    Article  CAS  PubMed  Google Scholar 

  30. Jukarainen S et al (2015) Obesity is associated with low NAD+/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins. The Journal of Clinical Endocrinology & Metabolism 101(1):275–283

    Article  Google Scholar 

  31. Jura M et al (2016) Mest and Sfrp5 are biomarkers for healthy adipose tissue. Biochimie 124:124–133

    Article  CAS  PubMed  Google Scholar 

  32. Khan NA et al (2014) Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Molecular Medicine 6(6):721–731

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Klaus S et al (1995) Functional assessment of white and brown adipocyte development and energy metabolism in cell culture. Dissociation of terminal differentiation and thermogenesis in brown adipocytes. J Cell Sci 108(10):3171–3180

    CAS  PubMed  Google Scholar 

  34. Klepac K et al (2016) The Gq signalling pathway inhibits brown and beige adipose tissue. Nat Commun 7:10895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koppen A, Kalkhoven E (2010) Brown vs white adipocytes: the PPARγ coregulator story. FEBS Lett 584(15):3250–3259

    Article  CAS  PubMed  Google Scholar 

  36. Lee P et al (2011) Inducible brown adipogenesis of supraclavicular fat in adult humans. Endocrinology 152(10):3597–3602

    Article  CAS  PubMed  Google Scholar 

  37. Lee P et al (2014a) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19(2):302–309

    Article  CAS  PubMed  Google Scholar 

  38. Lee P et al (2014b) Functional thermogenic beige adipogenesis is inducible in human neck fat. Int J Obes 38(2):170–176

    Article  Google Scholar 

  39. Lee MH et al (2016a) ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs. Scientific Reports 6:21173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee C-W, Hsiao W-T, Lee OK-S (2016b) Mesenchymal stromal cell-based therapies reduce obesity and metabolic syndromes induced by a high-fat diet. Transl res 182:61–74.e8

    Article  PubMed  Google Scholar 

  41. Lefterova MI et al (2014) PPARγ and the global map of adipogenesis and beyond. Trends in Endocrinology & Metabolism 25(6):293–302

    Article  CAS  Google Scholar 

  42. Lidell ME et al (2013) Evidence for two types of brown adipose tissue in humans. Nat med 19(5):631–634

    Article  CAS  PubMed  Google Scholar 

  43. Loft A et al (2015) Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers. Genes dev 25:1281–1294

    Google Scholar 

  44. Min SY et al (2016) Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat med 22(3):312–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mohsen-Kanson T et al (2014) Differentiation of human induced pluripotent stem cells into brown and ahite adipocytes: role of Pax3. Stem Cells 32(6):1459–1467

    Article  CAS  PubMed  Google Scholar 

  46. Okla M et al (2015) BMP7 drives human adipogenic stem cells into metabolically active beige adipocytes. Lipids 50(2):111–120

    Article  CAS  PubMed  Google Scholar 

  47. Peirce V, Carobbio S, Vidal-Puig A (2014) The different shades of fat. Nature 510(7503):76–83

    Article  CAS  PubMed  Google Scholar 

  48. Petrovic N et al (2010) Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285(10):7153–7164

    Article  CAS  PubMed  Google Scholar 

  49. Pisani D et al (2011) Differentiation of human adipose-derived stem cells into “brite” (brown-in-white) adipocytes. Front Endocrinol 2:87

    Article  CAS  Google Scholar 

  50. Rodriguez A-M et al (2004) Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem Biophys res Commun 315(2):255–263

    Article  CAS  PubMed  Google Scholar 

  51. Saely CH, Geiger K, Drexel H (2012) Brown versus white adipose tissue: a mini-review. Gerontology 58(1):15–23

    Article  PubMed  Google Scholar 

  52. Saito M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58(7):1526–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sanchez-Gurmaches J, Guertin DA (2014a) Adipocyte lineages: tracing back the origins of fat. Biochim Biophys Acta (BBA) - Mol Basis dis 1842(3):340–351

    Article  CAS  Google Scholar 

  54. Sanchez-Gurmaches J, Guertin DA (2014b) Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun 5:4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seale P et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207):961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shinoda K et al (2015) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat med 21(4):389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Silva FJ et al (2014) Metabolically active human brown adipose tissue derived stem cells. Stem Cells 32(2):572–581

    Article  CAS  PubMed  Google Scholar 

  58. Timmons JA et al (2007) Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci 104(11):4401–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Marken Lichtenbelt WD et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J med 360(15):1500–1508

    Article  PubMed  Google Scholar 

  60. Virtanen KA et al (2009) Functional brown adipose tissue in healthy adults. N Engl J med 360(15):1518–1525

    Article  CAS  PubMed  Google Scholar 

  61. Wang Y-L et al (2016) Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes. Biochem Biophys res Commun 478(2):689–695

    Article  CAS  PubMed  Google Scholar 

  62. Wu J et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zilberfarb V et al (1997) Human immortalized brown adipocytes express functional beta3-adrenoceptor coupled to lipolysis. J Cell Sci 110(7):801

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Toi Chu.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s13105-017-0593-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, DT., Tao, Y., Son, L.H. et al. Cell source, differentiation, functional stimulation, and potential application of human thermogenic adipocytes in vitro. J Physiol Biochem 73, 315–321 (2016). https://doi.org/10.1007/s13105-017-0567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-017-0567-z

Keywords

Navigation