Skip to main content

Advertisement

Log in

Chronic liquid nutrition intake induces obesity and considerable but reversible metabolic alterations in Wistar rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

We have previously described the development of substantial, but reversible obesity in Wistar rats fed with palatable liquid nutrition (Fresubin). In this study, we investigated changes in serum hormone levels, glycemia, fat mass, adipocyte size, and gene expression of adipokines and inflammatory markers in adipose tissue of Wistar rats fed by Fresubin (i) for 5 months, (ii) up to 90 days of age, or (iii) after 90 days of age to characterize metabolic alterations and their reversibility in rats fed with Fresubin. An intra-peritoneal glucose tolerance test was also performed to determine levels of serum leptin, adiponectin, insulin, and C-peptide in 2- and 4-month-old animals. In addition, mesenteric and epididymal adipose tissue weight, adipocyte diameter, and gene expression of pro- and anti-inflammatory adipokines and other markers were determined at the end of the study. Chronic Fresubin intake significantly increased adipocyte diameter, reduced glucose tolerance, and increased serum leptin, adiponectin, insulin, and C-peptide levels. Moreover, gene expression of leptin, adiponectin, CD68, and nuclear factor kappa B was significantly increased in mesenteric adipose tissue of Fresubin fed rats. Monocyte chemotactic protein 1 messenger RNA (mRNA) levels increased in mesenteric adipose tissue only in the group fed Fresubin during the entire experiment. In epididymal adipose tissue, fatty acid binding protein 4 mRNA levels were significantly increased in rats fed by Fresubin during adulthood. In conclusion, chronic Fresubin intake induced complex metabolic alterations in Wistar rats characteristic of metabolic syndrome. However, transition of rats from Fresubin to standard diet reversed these alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P (2006) Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res 45:203–236

    Article  CAS  PubMed  Google Scholar 

  2. Al-Hasani H, Joost HG (2005) Nutrition-/diet-induced changes in gene expression in white adipose tissue. Best Pract Res Clin Endocrinol Metab 19:589–603

    Article  CAS  PubMed  Google Scholar 

  3. Archer ZA, Corneloup J, Rayner DV, Barrett P, Moar KM, Mercer JG (2007) Solid and liquid obesogenic diets induce obesity and counter-regulatory changes in hypothalamic gene expression in juvenile Sprague–Dawley rats. J Nutr 137:1483–1490

    CAS  PubMed  Google Scholar 

  4. Archer ZA, Mercer JG (2007) Brain responses to obesogenic diets and diet-induced obesity. Proc Nutr Soc 66:124–130

    Article  CAS  PubMed  Google Scholar 

  5. Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM (2006) Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes 55:2277–2285

    Article  CAS  PubMed  Google Scholar 

  6. Barnea M, Shamay A, Stark AH, Madar Z (2006) A high-fat diet has a tissue-specific effect on adiponectin and related enzyme expression. Obesity (Silver Spring) 14:2145–2153

    Article  CAS  Google Scholar 

  7. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  CAS  PubMed  Google Scholar 

  8. Bhatt MP, Lim YC, Ha KS (2014) C-peptide replacement therapy as an emerging strategy for preventing diabetic vasculopathy. Cardiovasc Res 104:234–244

    Article  PubMed  Google Scholar 

  9. Bruce CR, Mertz VA, Heigenhauser GJ, Dyck DJ (2005) The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects. Diabetes 54:3154–3160

    Article  CAS  PubMed  Google Scholar 

  10. Bruun JM, Lihn AS, Pedersen SB, Richelsen B (2005) Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab 90:2282–2289

    Article  CAS  PubMed  Google Scholar 

  11. Buettner R, Scholmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15:798–808

    Article  CAS  Google Scholar 

  12. Caimari A, Oliver P, Keijer J, Palou A (2010) Peripheral blood mononuclear cells as a model to study the response of energy homeostasis-related genes to acute changes in feeding conditions. OMICS 14:129–141

    Article  CAS  PubMed  Google Scholar 

  13. Cao H, Maeda K, Gorgun CZ, Kim HJ, Park SY, Shulman GI, Kim JK, Hotamisligil GS (2006) Regulation of metabolic responses by adipocyte/macrophage fatty acid-binding proteins in leptin-deficient mice. Diabetes 55:1915–1922

    Article  CAS  PubMed  Google Scholar 

  14. Clement K, Langin D (2007) Regulation of inflammation-related genes in human adipose tissue. J Intern Med 262:422–430

    Article  CAS  PubMed  Google Scholar 

  15. Chalkley SM, Hettiarachchi M, Chisholm DJ, Kraegen EW (2002) Long-term high-fat feeding leads to severe insulin resistance but not diabetes in Wistar rats. Am J Physiol Endocrinol Metab 282:E1231–E1238

    Article  CAS  PubMed  Google Scholar 

  16. Chen A, Mumick S, Zhang C, Lamb J, Dai H, Weingarth D, Mudgett J, Chen H, MacNeil DJ, Reitman ML, Qian S (2005) Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes Res 13:1311–1320

    Article  CAS  PubMed  Google Scholar 

  17. de Ferranti S, Mozaffarian D (2008) The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 54:945–955

    Article  PubMed  Google Scholar 

  18. Deckelbaum RJ, Worgall TS, Seo T (2006) n-3 fatty acids and gene expression. Am J Clin Nutr 83:1520S–1525S

    CAS  PubMed  Google Scholar 

  19. Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T, Miles LM, Ranganathan G, Peterson CA, McGehee RE, Kern PA (2005) Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes 54:2305–2313

    Article  PubMed  Google Scholar 

  20. Eckel RH, Alberti KG, Grundy SM, Zimmet PZ (2010) The metabolic syndrome. Lancet 375:181–183

    Article  PubMed  Google Scholar 

  21. Fain JN (2010) Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediat Inflamm 2010:513948

    Article  Google Scholar 

  22. Ferrante AW Jr (2007) Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med 262:408–414

    Article  CAS  PubMed  Google Scholar 

  23. Furuhashi M, Fucho R, Gorgun CZ, Tuncman G, Cao H, Hotamisligil GS (2008) Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Invest 118:2640–2650

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Furuhashi M, Saitoh S, Shimamoto K, Miura T (2014) Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin Med Insights Cardiol 8:23–33

    PubMed  PubMed Central  Google Scholar 

  25. Furuhashi M, Tuncman G, Gorgun CZ, Makowski L, Atsumi G, Vaillancourt E, Kono K, Babaev VR, Fazio S, Linton MF, Sulsky R, Robl JA, Parker RA, Hotamisligil GS (2007) Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 447:959–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139

    Article  CAS  PubMed  Google Scholar 

  27. Ghorbani A, Shafiee-Nick R (2015) Pathological consequences of C-peptide deficiency in insulin-dependent diabetes mellitus. World J Diabetes 6:145–150

    Article  PubMed  PubMed Central  Google Scholar 

  28. Giorgino F, Laviola L, Eriksson JW (2005) Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand 183:13–30

    Article  CAS  PubMed  Google Scholar 

  29. Goran MI, Alderete TL (2012) Targeting adipose tissue inflammation to treat the underlying basis of the metabolic complications of obesity. Nestle Nutr Inst Workshop Ser 73:49–60, discussion p61-46

    Article  PubMed  PubMed Central  Google Scholar 

  30. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83:461S–465S

    CAS  PubMed  Google Scholar 

  31. Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23:270–299

    Article  CAS  PubMed  Google Scholar 

  32. Heilbronn LK, Liu B (2014) Do adipose tissue macrophages promote insulin resistance or adipose tissue remodelling in humans? Horm Mol Biol Clin Investig 20:3–13

    CAS  PubMed  Google Scholar 

  33. Heyne A, Kiesselbach C, Sahun I, McDonald J, Gaiffi M, Dierssen M, Wolffgramm J (2009) An animal model of compulsive food-taking behaviour. Addict Biol 14:373–383

    Article  PubMed  Google Scholar 

  34. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  CAS  PubMed  Google Scholar 

  35. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y (2001) Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50:1126–1133

    Article  CAS  PubMed  Google Scholar 

  36. Im SS, Kwon SK, Kim TH, Kim HI, Ahn YH (2007) Regulation of glucose transporter type 4 isoform gene expression in muscle and adipocytes. IUBMB Life 59:134–145

    Article  CAS  PubMed  Google Scholar 

  37. Jernas M, Palming J, Sjoholm K, Jennische E, Svensson PA, Gabrielsson BG, Levin M, Sjogren A, Rudemo M, Lystig TC, Carlsson B, Carlsson LM, Lonn M (2006) Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J 20:1540–1542

    Article  CAS  PubMed  Google Scholar 

  38. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kahn BB, Pedersen O (1992) Tissue-specific regulation of glucose transporters in different forms of obesity. Proc Soc Exp Biol Med 200:214–217

    Article  CAS  PubMed  Google Scholar 

  40. Kanety H, Hemi R, Ginsberg S, Pariente C, Yissachar E, Barhod E, Funahashi T, Laron Z (2009) Total and high molecular weight adiponectin are elevated in patients with Laron syndrome despite marked obesity. Eur J Endocrinol 161:837–844

    Article  CAS  PubMed  Google Scholar 

  41. Kieffer TJ, Habener JF (2000) The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 278:E1–E14

    CAS  PubMed  Google Scholar 

  42. Kim YJ, Park T (2008) Genes are differentially expressed in the epididymal fat of rats rendered obese by a high-fat diet. Nutr Res 28:414–422

    Article  CAS  PubMed  Google Scholar 

  43. Krskova K, Eckertova M, Kukan M, Kuba D, Kebis A, Olszanecki R, Suski M, Gajdosechova L, Zorad S (2012) Aerobic training lasting for 10 weeks elevates the adipose tissue FABP4, Gialpha, and adiponectin expression associated by a reduced protein oxidation. Endocr Regul 46:137–146

    Article  CAS  PubMed  Google Scholar 

  44. Kwon H, Pessin JE (2013) Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne) 4:71

    Google Scholar 

  45. Lee JY, Hwang DH (2002) Docosahexaenoic acid suppresses the activity of peroxisome proliferator-activated receptors in a colon tumor cell line. Biochem Biophys Res Commun 298:667–674

    Article  CAS  PubMed  Google Scholar 

  46. Levin BE (2005) Factors promoting and ameliorating the development of obesity. Physiol Behav 86:633–639

    Article  CAS  PubMed  Google Scholar 

  47. Levin BE, Dunn-Meynell AA (2002) Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 282:R46–R54

    CAS  PubMed  Google Scholar 

  48. Levin BE, Richard D, Michel C, Servatius R (2000) Differential stress responsivity in diet-induced obese and resistant rats. Am J Physiol Regul Integr Comp Physiol 279:R1357–R1364

    CAS  PubMed  Google Scholar 

  49. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  50. Madsen AN, Hansen G, Paulsen SJ, Lykkegaard K, Tang-Christensen M, Hansen HS, Levin BE, Larsen PJ, Knudsen LB, Fosgerau K, Vrang N (2010) Long-term characterization of the diet-induced obese and diet-resistant rat model: a polygenetic rat model mimicking the human obesity syndrome. J Endocrinol 206:287–296

    Article  CAS  PubMed  Google Scholar 

  51. Massiera F, Saint-Marc P, Seydoux J, Murata T, Kobayashi T, Narumiya S, Guesnet P, Amri EZ, Negrel R, Ailhaud G (2003) Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern? J Lipid Res 44:271–279

    Article  CAS  PubMed  Google Scholar 

  52. Michaud A, Boulet MM, Veilleux A, Noel S, Paris G, Tchernof A (2014) Abdominal subcutaneous and omental adipocyte morphology and its relation to gene expression, lipolysis and adipocytokine levels in women. Metabolism 63:372–381

    Article  CAS  PubMed  Google Scholar 

  53. Mikuska L, Vrabcova M, Lackovicova L, Ukropec J, Hegedusova N, Slavkovsky P, Hubka P, Mravec B (2013) Long-term liquid nutrition intake and development of obesity: differences between young and adult rats. Endocr Regul 47:85–92

    Article  CAS  PubMed  Google Scholar 

  54. Morris MJ, Chen H, Watts R, Shulkes A, Cameron-Smith D (2008) Brain neuropeptide Y and CCK and peripheral adipokine receptors: temporal response in obesity induced by palatable diet. Int J Obes (Lond) 32:249–258

    Article  CAS  Google Scholar 

  55. Muhlhausler BS, Cook-Johnson R, James M, Miljkovic D, Duthoit E, Gibson R (2010) Opposing effects of omega-3 and omega-6 long chain polyunsaturated Fatty acids on the expression of lipogenic genes in omental and retroperitoneal adipose depots in the rat. J Nutr Metab. doi:10.1155/2010/927836

    PubMed  PubMed Central  Google Scholar 

  56. Mullen KL, Smith AC, Junkin KA, Dyck DJ (2007) Globular adiponectin resistance develops independently of impaired insulin-stimulated glucose transport in soleus muscle from high-fat-fed rats. Am J Physiol Endocrinol Metab 293:E83–E90

    Article  CAS  PubMed  Google Scholar 

  57. Naderali EK, Estadella D, Rocha M, Pickavance LC, Fatani S, Denis RG, Williams G (2003) A fat-enriched, glucose-enriched diet markedly attenuates adiponectin mRNA levels in rat epididymal adipose tissue. Clin Sci (Lond) 105:403–408

    Article  CAS  Google Scholar 

  58. Ota H, Furuhashi M, Ishimura S, Koyama M, Okazaki Y, Mita T, Fuseya T, Yamashita T, Tanaka M, Yoshida H, Shimamoto K, Miura T (2012) Elevation of fatty acid-binding protein 4 is predisposed by family history of hypertension and contributes to blood pressure elevation. Am J Hypertens 25:1124–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Palou M, Priego T, Sanchez J, Rodriguez AM, Palou A, Pico C (2009) Gene expression patterns in visceral and subcutaneous adipose depots in rats are linked to their morphologic features. Cell Physiol Biochem 24:547–556

    Article  CAS  PubMed  Google Scholar 

  60. Papa PC, Seraphim PM, Machado UF (1997) Loss of weight restores GLUT 4 content in insulin-sensitive tissues of monosodium glutamate-treated obese mice. Int J Obes Relat Metab Disord 21:1065–1070

    Article  CAS  PubMed  Google Scholar 

  61. Paulsen SJ, Jelsing J, Madsen AN, Hansen G, Lykkegaard K, Larsen LK, Larsen PJ, Levin BE, Vrang N (2010) Characterization of beta-cell mass and insulin resistance in diet-induced obese and diet-resistant rats. Obesity (Silver Spring) 18:266–273

    Article  CAS  Google Scholar 

  62. Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, Keaney JF Jr, Meigs JB, Lipinska I, Kathiresan S, Murabito JM, O'Donnell CJ, Benjamin EJ, Fox CS (2007) Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation 116:1234–1241

    Article  CAS  PubMed  Google Scholar 

  63. Queipo-Ortuno MI, Escote X, Ceperuelo-Mallafre V, Garrido-Sanchez L, Miranda M, Clemente-Postigo M, Perez-Perez R, Peral B, Cardona F, Fernandez-Real JM, Tinahones FJ, Vendrell J (2012) FABP4 dynamics in obesity: discrepancies in adipose tissue and liver expression regarding circulating plasma levels. PLoS One 7:e48605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rajala MW, Scherer PE (2003) Minireview: the adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144:3765–3773

    Article  CAS  PubMed  Google Scholar 

  65. Ravussin E, Smith SR (2002) Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci 967:363–378

    Article  CAS  PubMed  Google Scholar 

  66. Reseland JE, Haugen F, Hollung K, Solvoll K, Halvorsen B, Brude IR, Nenseter MS, Christiansen EN, Drevon CA (2001) Reduction of leptin gene expression by dietary polyunsaturated fatty acids. J Lipid Res 42:743–750

    CAS  PubMed  Google Scholar 

  67. Riccardi G, Giacco R, Rivellese AA (2004) Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 23:447–456

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez A, Catalan V, Becerril S, Gil MJ, Mugueta C, Gomez-Ambrosi J, Fruhbeck G (2008) Impaired adiponectin-AMPK signalling in insulin-sensitive tissues of hypertensive rats. Life Sci 83:540–549

    Article  CAS  PubMed  Google Scholar 

  69. Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, Nagai M, Matsuzawa Y, Funahashi T (2004) Adiponectin as a biomarker of the metabolic syndrome. Circ J 68:975–981

    Article  CAS  PubMed  Google Scholar 

  70. Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, Newgard CB, Makowski L (2011) Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring) 19:1109–1117

    Article  CAS  Google Scholar 

  71. Seino Y, Yamamoto T, Koh G (1992) Insulin and glucose transporter gene expression in obesity and diabetes. Proc Soc Exp Biol Med 200:210–213

    Article  CAS  PubMed  Google Scholar 

  72. Semple RK, Halberg NH, Burling K, Soos MA, Schraw T, Luan J, Cochran EK, Dunger DB, Wareham NJ, Scherer PE, Gorden P, O'Rahilly S (2007) Paradoxical elevation of high-molecular weight adiponectin in acquired extreme insulin resistance due to insulin receptor antibodies. Diabetes 56:1712–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Seraphim PM, Nunes MT, Machado UF (2001) GLUT4 protein expression in obese and lean 12-month-old rats: insights from different types of data analysis. Braz J Med Biol Res 34:1353–1362

    Article  CAS  PubMed  Google Scholar 

  74. Sevilla L, Guma A, Enrique-Tarancon G, Mora S, Munoz P, Palacin M, Testar X, Zorzano A (1997) Chronic high-fat feeding and middle-aging reduce in an additive fashion Glut4 expression in skeletal muscle and adipose tissue. Biochem Biophys Res Commun 235:89–93

    Article  CAS  PubMed  Google Scholar 

  75. Trayhurn P, Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92:347–355

    Article  CAS  PubMed  Google Scholar 

  76. Ukropec J, Penesova A, Skopkova M, Pura M, Vlcek M, Radikova Z, Imrich R, Ukropcova B, Tajtakova M, Koska J, Zorad S, Belan V, Vanuga P, Payer J, Eckel J, Klimes I, Gasperikova D (2008) Adipokine protein expression pattern in growth hormone deficiency predisposes to the increased fat cell size and the whole body metabolic derangements. J Clin Endocrinol Metab 93:2255–2262

    Article  CAS  PubMed  Google Scholar 

  77. Van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP, Sybertz EJ, Strader CD, Davis HR Jr (1997) Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest 99:385–390

    Article  PubMed  PubMed Central  Google Scholar 

  78. Woods SC, D'Alessio DA, Tso P, Rushing PA, Clegg DJ, Benoit SC, Gotoh K, Liu M, Seeley RJ (2004) Consumption of a high-fat diet alters the homeostatic regulation of energy balance. Physiol Behav 83:573–578

    Article  CAS  PubMed  Google Scholar 

  79. Woods SC, Seeley RJ, Rushing PA, D'Alessio D, Tso P (2003) A controlled high-fat diet induces an obese syndrome in rats. J Nutr 133:1081–1087

    CAS  PubMed  Google Scholar 

  80. Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J, Wat NM, Wong WK, Lam KS (2006) Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 52:405–413

    Article  CAS  PubMed  Google Scholar 

  81. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang ZH, Miyahara H, Takeo J, Katayama M (2012) Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice. Diabetol Metab Syndr 4:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ye J (2008) Regulation of PPARgamma function by TNF-alpha. Biochem Biophys Res Commun 374:405–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yosten GL, Maric-Bilkan C, Luppi P, Wahren J (2014) Physiological effects and therapeutic potential of proinsulin C-peptide. Am J Physiol Endocrinol Metab 307:E955–E968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yu R, Kim CS, Kwon BS, Kawada T (2006) Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity (Silver Spring) 14:1353–1362

    Article  CAS  Google Scholar 

  86. Zeyda M, Stulnig TM (2009) Obesity, inflammation, and insulin resistance--a mini-review. Gerontology 55:379–386

    Article  CAS  PubMed  Google Scholar 

  87. Zhang M, Zhu W, Li Y (2014) Small molecule inhibitors of human adipocyte fatty acid binding protein (FABP4). Med Chem 10:339–347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by European Regional Development Fund Research and Development Grant (ITMS 26240120015). The grant support had no role in the design, analysis, or writing of this article. We wish to thank Dr. Goldstein of ScienceDocs (www.sciencedocs.com/) for the editing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Mravec.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests.

Additional information

Livia Mikuska and Michaela Vrabcova participated equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikuska, L., Vrabcova, M., Tillinger, A. et al. Chronic liquid nutrition intake induces obesity and considerable but reversible metabolic alterations in Wistar rats. J Physiol Biochem 72, 225–243 (2016). https://doi.org/10.1007/s13105-016-0472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0472-x

Keywords

Navigation