Skip to main content

Advertisement

Log in

Potential renoprotective effects of piceatannol in ameliorating the early-stage nephropathy associated with obesity in obese Zucker rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Obesity-associated nephropathy is considered to be a leading cause of end-stage renal disease. Resveratrol supplementation represents a promising therapy to attenuate kidney injury, but the poor solubility and limited bioavailability of this polyphenol limits its use in dietary intervention. Piceatannol, a resveratrol analogue, has been suggested as a better option. In this study, we aimed to provide evidence of a preventive action of piceatannol in very early stages of obesity-associated nephropathy. Thirty obese Zucker rats were divided into three experimental groups: one control and two groups orally treated for 6 weeks with 15 and 45 mg piceatannol/kg body weight/day. Enzyme-linked immunosorbent assays (ELISA) were used to determine renal and urinary kidney injury molecule-1 (Kim-1), renal fibrosis markers (transforming growth factor β1 and fibronectin) and renal sirtuin-1 protein. Oxidative stress was assessed in the kidney by measuring lipid peroxidation and nitrosative stress (thiobarbituric acid reactive substrates and 3-nitrotyrosine levels, respectively) together with the activity of the antioxidant enzyme superoxide dismutase. Renal fatty acids profile analysis was performed by thin-layer and gas chromatography. Piceatannol-treated rats displayed lower levels of urinary and renal Kim-1. Renal fibrosis biomarkers and lipid peroxidation exhibited a tendency to decrease in the piceatannol-treated groups. Piceatannol treatment did not modify superoxide dismutase activity or sirtuin-1 protein levels, while it seemed to increase the levels of polyunsaturated and omega-6 polyunsaturated fatty acids in the kidneys. Our findings suggest a mild renoprotective effect of piceatannol in obese Zucker rats and the need of intervention at early stages of renal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3-NT:

3-nitrotyrosine

ECM:

extracellular matrix

Kim-1:

kidney injury molecule-1

MUFA:

monounsaturated fatty acids

PICEAT:

piceatannol

PUFA:

polyunsaturated fatty acids

ROS:

reactive oxygen species

SFA:

saturated fatty acids

Sirt-1:

sirtuin-1 protein

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid reactive substrates

TGF-β1:

transforming growth factor beta 1

References

  1. Ashikawa K, Majumdar S, Banerjee S, Bharti AC, Shishodia S, Aggarwal BB (2002) Piceatannol inhibits TNF-induced NF-κB activation and NF-κB-mediated gene expression through suppression of IκBα kinase and p65 phosphorylation. J Immunol 169:6490–6497

    Article  CAS  PubMed  Google Scholar 

  2. Bailly V, Zhang Z, Meier W, Cate R, Sanicola M, Bonventre JV (2002) Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem 277(42):39739–39748

    Article  CAS  PubMed  Google Scholar 

  3. Bavaresco L (2003) Role of viticultural factors on stilbene concentrations of grapes and wine. Drugs Exp Clin Res 29:181–187

    CAS  PubMed  Google Scholar 

  4. Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, Wang M (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74:619–624

    Article  CAS  PubMed  Google Scholar 

  5. Biesalski HK (2007) Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care 10(6):724–728

    Article  CAS  PubMed  Google Scholar 

  6. Chander PN, Gealekman O, Brodsky SV, Elitok S, Tojo A, Crabtree M, Gross SS, Goligorsky MS (2004) Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J Am Soc Nephrol 15:2391–2403

    Article  CAS  PubMed  Google Scholar 

  7. Chanvitayapongs S, Draczynska-Lusiak B, Sun AY (1997) Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. Neuroreport 8(6):1499–1502

    Article  CAS  PubMed  Google Scholar 

  8. Chen KH, Hung CC, Hsu HH, Jing YH, Yang CW, Chen JK (2011) Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats. Chem Biol Interact 190(1):45–53

    Article  CAS  PubMed  Google Scholar 

  9. Chiusolo A, Defazio R, Zanetti E, Mongillo M, Mori N, Cristofori P, Trevisan A (2010) Kidney injury molecule-1 expression in rat proximal tubule after treatment with segment-specific nephrotoxicants: a tool for early screening of potential kidney toxicity. Toxicol Pathol 38(3):338–345

    Article  CAS  PubMed  Google Scholar 

  10. Coimbra TM, Janssen U, Gröne HJ, Ostendorf T, Kunter U, Schmidt H, Brabant G, Floege J (2000) Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int 57(1):167–182

    Article  CAS  PubMed  Google Scholar 

  11. Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4(8):444–452

    Article  CAS  PubMed  Google Scholar 

  12. Goknar N, Oktem F, Ozgen IT, Torun E, Kucukkoc M, Demir AD, Cesur Y (2015) Determination of early urinary renal injury markers in obese children. Pediatr Nephrol 30(1):139–144

    Article  PubMed  Google Scholar 

  13. Gómez-Zorita S, Fernández-Quintela A, Macarulla MT, Aguirre L, Hijona E, Bujanda L, Milagro F, Martínez JA, Portillo MP (2012) Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br J Nutr 107(2):202–210

    Article  PubMed  Google Scholar 

  14. Hosohata K, Ando H, Takeshita Y, Misu H, Takamura T, Kaneko S, Fujimura A (2014) Urinary Kim-1 is a sensitive biomarker for the early stage of diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty rats. Diab Vasc Dis Res 11(4):243–250

    Article  CAS  PubMed  Google Scholar 

  15. Hussein JS (2013) Cell membrane fatty acids and health. Int J Pharm Pharm Sci 5(3):38–46

    CAS  Google Scholar 

  16. Iliescu R, Chade AR (2010) Progressive renal vascular proliferation and injury in obese Zucker rats. Microcirculation 17(4):250–8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kasiske BL, O’Donnell MP, Keane WF (1992) The Zucker rat model of obesity, insulin resistance, hyperlipidemia, and renal injury. Hypertension 19:I110–115

    Article  CAS  PubMed  Google Scholar 

  18. Kim DH, Jung YJ, Lee JE, Lee AS, Kang KP, Lee S, Park SK, Han MK, Lee SY, Ramkumar KM, Sung MJ, Kim W (2011) Sirt1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53. Am J Physiol Renal Physiol 301(2):F427–435

    Article  CAS  PubMed  Google Scholar 

  19. Kitada M, Koya D (2013) Renal protective effects of resveratrol. Oxid Med Cell Longev 2013:568093

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kitada M, Kume S, Imaizumi N, Koya D (2011) Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1- independent pathway. Diabetes 60(2):634–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D (2013) Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond) 124(3):153–164

    Article  CAS  Google Scholar 

  22. Kitada M, Takeda A, Nagai T, Ito H, Kanasaki K, Koya D (2011) Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res 2011:908185

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    CAS  PubMed  Google Scholar 

  24. Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Böttinger EP, Klotman PE, Thorgeirsson SS (1996) Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 74(6):991–1003

    CAS  PubMed  Google Scholar 

  25. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122

    Article  CAS  PubMed  Google Scholar 

  26. Laping NJ, Olson BA, Day JR, Brickson BM, Contino LC, Short BG, Ali SM, Brooks DP (1998) The age-related increase in renal clusterin mRNA is accelerated in obese Zucker rats. J Am Soc Nephrol 9:38–45

    CAS  PubMed  Google Scholar 

  27. Lee GT, Ha H, Jung M, Li H, Hong SW, Cha BS, Lee HC, Cho YD (2003) Delayed treatment with lithospermate B attenuates experimental diabetic renal injury. J Am Soc Nephrol 14(3):709–720

    Article  CAS  PubMed  Google Scholar 

  28. Leonard SS, Xia C, Jiang B-H, Stinefelt B, Klandorf H, Harris GK, Shi X (2003) Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun 309(4):1017–1026

    Article  CAS  PubMed  Google Scholar 

  29. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in one-step reaction. J Lip Res 27:114–120

    CAS  Google Scholar 

  30. Loke WM, Proudfoot JM, Hodgson JM, McKinley AJ, Hime N, Magat M, Stocker R, Croft KD (2010) Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol 30(4):749–757

    Article  CAS  PubMed  Google Scholar 

  31. Lu T, Harper AF, Zhao J, Corl BA, LeRoith T, Dalloul RA (2014) Effects of a dietary antioxidant blend and vitamin E on fatty acid profile, liver function, and inflammatory response in broiler chickens fed a diet high in oxidants. Poult Sci 93(7):1658–1666

    Article  CAS  PubMed  Google Scholar 

  32. Malar DS, Devi KP (2014) Dietary polyphenols for treatment of Alzheimer’s disease—future research and development. Curr Pharm Biotechnol 15(4):330–342

    Article  CAS  PubMed  Google Scholar 

  33. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269(2):315–325

    Article  CAS  PubMed  Google Scholar 

  34. Murias M, Jäger W, Handler N, Erker T, Horvath Z, Szekeres T, Nohl H, Gille L (2005) Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem Pharmacol 69(6):903–912

    Article  CAS  PubMed  Google Scholar 

  35. Paczek L, Teschner M, Schaefer RM, Heidland A (1991) Intraglomerular fibronectin accumulation and degradation in obese Zucker rats. Diabetologia 34(11):786–789

    Article  CAS  PubMed  Google Scholar 

  36. Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812(7):719–731

    Article  CAS  PubMed  Google Scholar 

  37. Piotrowska H, Kucinska M, Murias M (2012) Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 750:60–82

    Article  CAS  PubMed  Google Scholar 

  38. Poirier B, Lannaud-Bournoville M, Conti M, Bazin R, Michel O, Bariéty J, Chevalier J, Myara I (2000) Oxidative stress occurs in absence of hyperglycaemia and inflammation in the onset of kidney lesions in normotensive obese rats. Nephrol Dial Transplant 15:467–476

    Article  CAS  PubMed  Google Scholar 

  39. Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 52:4713–4719

    Article  CAS  PubMed  Google Scholar 

  40. Ruiz JI, Ochoa B (1997) Quantification in the subnanomolar range of phospholipids and neutral lipids by monodimensional thin-layer chromatography and image analysis. J Lipid Res 38:1482–1489

    CAS  PubMed  Google Scholar 

  41. Setoguchi Y, Oritani Y, Ito R, Inagaki H, Maruki-Uchida H, Ichiyanagi T, Ito T (2014) Absorption and metabolism of piceatannol in rats. J Agric Food Chem 62(12):2541–2548

    Article  CAS  PubMed  Google Scholar 

  42. Shaikh SR, Edidin M (2006) Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am J Clin Nutr 84(6):1277–1289

    CAS  PubMed  Google Scholar 

  43. Sharma S, Anjaneyulu M, Kulkarni SK, Chopra K (2006) Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology 76(2):69–75

    Article  CAS  PubMed  Google Scholar 

  44. Sharma K, Eltayeb BO, McGowan TA, Dunn SR, Alzahabi B, Rohde R, Ziyadeh FN, Lewis EJ (1999) Captopril-induced reduction of serum levels of transforming growth factor-beta1 correlates with long-term renoprotection in insulin-dependent diabetic patients. Am J Kidney Dis 34(5):818–823

    Article  CAS  PubMed  Google Scholar 

  45. Slyvka Y, Inman SR, Malgor R, Jackson EJ, Yee J, Oshogwemoh O, Adame J, Nowak FV (2009) Protective effects of antioxidant-fortified diet on renal function and metabolic profile in obese Zucker rat. Endocrine 35(1):89–100

    Article  CAS  PubMed  Google Scholar 

  46. Son PS, Park SA, Na HK, Jue DM, Kim S, Surh YJ (2010) Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-κB activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKKβ as a potential target. Carcinogenesis 31(8):1442–1449

    Article  CAS  PubMed  Google Scholar 

  47. van Timmeren MM, Bakker SJ, Vaidya VS, Bailly V, Schuurs TA, Damman J, Stegeman CA, Bonventre JV, van Goor H (2006) Tubular kidney injury molecule-1 in protein-overload nephropathy. Am J Physiol Renal Physiol 291(2):F456–464

    Article  PubMed  Google Scholar 

  48. van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJ, van Goor H, Stegeman CA (2007) Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 212:209–217

    Article  PubMed  Google Scholar 

  49. Wu L, Zhang Y, Ma X, Zhang N, Qin G (2012) The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats. Mol Biol Rep 39(9):9085–9093

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Q, Davis KJ, Hoffmann D, Vaidya VS, Brown RP, Goering PL (2014) Urinary biomarkers track the progression of nephropathy in hypertensive and obese rats. Biomark Med 8(1):85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ziyadeh FN, Han DC (1997) Involvement of transforming growth factor-beta and its receptors in the pathogenesis of diabetic nephropathy. Kidney Int Suppl 60:S7–11

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by REFBIO Biomedical Network, sustained by the European programme POCTEFA, under the form of a trans-Pyrenean collaborative project: POLYFRESNOL/REFBIO. The authors would like to thank other partners who have participated in the POLYFRESNOL/REFBIO collaborative project: Dr. Luis Bujanda (BioDonostia Institute, San Sebastián, Spain), Dr. José A. Oteo (Hospital San Pedro-CIBIR, Logroño, Spain), Dr. Francoise Nepveu (UPS, Toulouse, France), Dr. Jean Michel Senard (CHUT, Toulouse) and Dr. Anne Bouloumié (INSERM, Toulouse). Prof. Portillo acknowledges the Government of the Basque Country, IT-572-13, and University of the Basque Country (UPV/EHU), ELDUNANOTEK UFI11/32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Aldámiz-Echevarría.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llarena, M., Andrade, F., Hasnaoui, M. et al. Potential renoprotective effects of piceatannol in ameliorating the early-stage nephropathy associated with obesity in obese Zucker rats. J Physiol Biochem 72, 555–566 (2016). https://doi.org/10.1007/s13105-015-0457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0457-1

Keywords

Navigation