Skip to main content
Log in

Two-dimensional k-subspace clustering and its applications on image recognition

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Image clustering plays an important role in computer vision and machine learning. However, most of the existing clustering algorithms flatten the image into one-dimensional vector as an image representation for subsequent learning without fully considering the spatial relationship between pixels, which may lose some useful intrinsic structural information of the matrix data samples and result in high computational complexity. In this paper, we propose a novel two-dimensional k-subspace clustering (2DkSC). By projecting data samples into a discriminant low-dimensional space, 2DkSC maximizes the between-cluster difference and meanwhile minimizes within-cluster distance of matrix data samples in the projected space, thus dimensionality reduction and clustering can be realized simultaneously. The weight between the between-cluster and within-cluster terms is derived from a Bhattacharyya upper bound, which is determined by the involved input data samples. This weighting constant makes the proposed 2DkSC adaptive without setting any parameters, which improves the computational efficiency. Moreover, 2DkSC can be effectively solved by a standard eigenvalue decomposition problem. Experimental results on three different types of image datasets show that 2DkSC achieves the best clustering results in terms of average clustering accuracy and average normalized mutual information, which demonstrates the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html.

  2. https://www.face-rec.org/databases/.

References

  1. Tan PN, Steinbach M, Kumar V (2005) Introduction to Data Mining. Addison Wesley, Boston

    Google Scholar 

  2. Zheng CT (2018) C, Liu, H. San Wong, Corpus based topic diffusion for short text clustering, Neurocomputing 275:2444–2458

    Google Scholar 

  3. Abasi AK, Khader AT, Al-Betar MA et al (2020) Link based multi verse optimizer for text documents clustering. Appl Soft Comput 87:106002

    Article  Google Scholar 

  4. Costa G, Ortale R (2021) Jointly modeling and simultaneously discovering topics and clusters in text corpora using word vectors. Inf Sci 563:226–240

    Article  MathSciNet  Google Scholar 

  5. Thirumoorthy K, Muneeswaran K (2021) A hybrid approach for text document clustering using jaya optimization algorithm. Expert Syst Appl 178:115040

    Article  Google Scholar 

  6. Jiang Z, Li T, Min W et al (2017) Fuzzy c-means clustering based on weights and gene expression programming. Pattern Recogn Lett 90:1–7

    Article  Google Scholar 

  7. Shukla AK, Muhuri PK (2019) Big data clustering with interval type 2 fuzzy uncertainty modeling in gene expression datasets. Eng Appl Artif Intell 77:268–282

    Article  Google Scholar 

  8. Zeng YP, Xu ZS, He Y et al (2020) Fuzzy entropy clustering by searching local border points for the analysis of gene expression data. Knowledge Based Systems 190:105309

    Article  Google Scholar 

  9. Rahman MA, Ang LM, Seng KP (2020) Clustering biomedical and gene expression datasets with kernel density and unique neighborhood set based vein detection. Inf Syst 91:101490

    Article  Google Scholar 

  10. Wang M, Deng WH (2020) Deep face recognition with clustering based domain adaptation. Neurocomputing 393:1–14

    Article  Google Scholar 

  11. Liu N, Guo B, Li XJ et al (2021) Gradient clustering algorithm based on deep learning aerial image detection. Pattern Recogn Lett 141:37–44

    Article  Google Scholar 

  12. Fang U, Li JX, Lu XQ et al (2021) Self-supervised cross-iterative clustering for unlabeled plant disease images. Neurocomputing 456:36–48

    Article  Google Scholar 

  13. Pham TX, Siarry P, Oulhadj H (2018) Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation. Appl Soft Comput 65:230–242

    Article  Google Scholar 

  14. Mahata N, Kahali S, Adhikari SK et al (2018) Local contextual information and Gaussian function induced fuzzy clustering algorithm for brain MR image segmentation and intensity inhomogeneity estimation. Appl Soft Comput 68:586–596

    Article  Google Scholar 

  15. Lei T, Jia X, Zhang Y et al (2019) Superpixel-based fast fuzzy C-means clustering for color image segmentation. IEEE Trans Fuzzy Syst 27(9):1753–1766

    Article  Google Scholar 

  16. Wei D, Wang ZB, Si L et al (2021) An image segmentation method based on a modified local information weighted intuitionistic fuzzy C-means clustering and gold panning algorithm. Eng Appl Artif Intell 101:104209

    Article  Google Scholar 

  17. Wu J, Liu H, Xiong H et al (2015) k-means based consensus clustering: a unified view. IEEE Trans Knowl Data Eng 27(1):155–169

    Article  Google Scholar 

  18. Bradley PS, Mangasarian OL (2000) k-plane clustering. J Global Optim 16(1):23–32

    Article  MathSciNet  MATH  Google Scholar 

  19. Tseng P (2000) Nearest q-Flat to m Points. J Optim Theory Appl 105:249–252

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu LM, Guo YR, Wang Z et al (2017) k-proximal plane clustering. Int J Mach Learn Cybern 8(5):1537–1554

    Article  Google Scholar 

  21. Wang Z, Shao YH, Bai L et al (2015) Twin support vector machine for clustering. IEEE Trans Neural Netw Learn Sys 26(10):2583–2588

    Article  MathSciNet  Google Scholar 

  22. Khemchandani R, Pal A, Chandra S (2018) Fuzzy least squares twin support vector clustering. Neural Comput Appl 29(2):553–563

    Article  Google Scholar 

  23. Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910

    Article  Google Scholar 

  24. Arun Kumar M, Gopal M (2009) Least squares twin support vector machines for pattern classification. mExpert Sys With Appl 36(4):7535–7543

    Article  Google Scholar 

  25. Ye Q, Zhao H, Li Z et al (2017) L1-norm distance minimization-based fast robust twin support vector \(k\)-plane clustering. IEEE Trans Neural Netw Learn Sys 29(9):4494–4503

    Article  Google Scholar 

  26. Li CN, Shao YH, Guo YR et al (2019) Robust k-subspace discriminant clustering. Appl Soft Comput 85:105858

    Article  Google Scholar 

  27. Li Z, Yao L, Wang S et al (2020) Adaptive two-dimensional embedded image clustering, Proceedings of the AAAI conference on. Artif Intell 34(04):4796–4803

    Google Scholar 

  28. Lu Y, Yuan C, Lai Z et al (2019) Horizontal and vertical nuclear norm based 2DLDA for image representation. IEEE Trans Circuits Syst Video Technol 29(4):941–955

    Article  Google Scholar 

  29. Li CN, Shao YH, Deng NY (2015) Robust L1-norm two-dimensional linear discriminant analysis. Neural Netw 65:92–104

    Article  MATH  Google Scholar 

  30. Li CN, Shang MQ, Shao YH et al (2019) Sparse L1-norm two dimensional linear discriminant analysis via the generalized elastic net regularization. Neurocomputing 337:80–96

    Article  Google Scholar 

  31. Lu Y, Yuan C, Lai Z et al (2018) Horizontal and vertical nuclear norm-based 2DLDA for image representation. IEEE Trans Circuits Syst Video Technol 29(4):941–955

    Article  Google Scholar 

  32. Li CN, Shao YH, Chen WJ et al (2021) Generalized two-dimensional linear discriminant analysis with regularization. Neural Netw 142:73–91

    Article  Google Scholar 

  33. Li CN, Shao YH, Wang Z et al (2019) Robust bilateral Lp-norm two-dimensional linear discriminant analysis. Inf Sci 500:274–297

    Article  MathSciNet  MATH  Google Scholar 

  34. Guo YR, Bai YQ, Li CN et al (2021) Two dimensional Bhattacharyya bound linear discriminant analysis with its applications. Appl Intell 1-17

  35. Ma Z, Lai Y, Kleijn WB et al (2019) Variational bayesian learning for dirichlet process mixture of inverted dirichlet distributions in non-gaussian image feature modeling. IEEE Trans Neural Netw Learn Sys 30(2):449–463

    Article  MathSciNet  Google Scholar 

  36. Cai D, He X, Han J (2005) Document clustering using locality preserving indexing. IEEE Trans Knowl Data Eng 17(12):1624–1637

    Article  Google Scholar 

  37. Yang J, Parikh D, Batra D (2016) Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp 5147–5156. https://doi.org/10.1109/CVPR.2016.556

  38. Xie Y, Lin B, Qu Y et al (2020) Joint deep multi-view learning for image clustering. IEEE Trans Knowledge Data Eng 33(11):3594–3606

  39. Nene SA, Nayar SK, Murase H (1996) Columbia object image library: Coil-100. Technical Report CUCS-006-96, Department of Computer Science, Columbia University, New York

  40. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  41. Jain V (2002) The Indian face database, http://vis-www.cs.umass.edu/~vidit/IndianFaceDatabase/

  42. Phillips PJ, Moon H, Rizvi SA et al (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  43. Nielsen F (2014) Generalized bhattacharyya and chernoff upper bounds on bayes error using quasi-arithmetic means. Pattern Recogn Lett 42:25–34

    Article  Google Scholar 

  44. Fukunaga K (2013) Introduction to statistical pattern recognition. Academic Press, New York

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.12171307) and Zhejiang Soft Science Research Project (No.2021C35003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qin Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the appendix, we present the proof procedure of the relevant Bhattacharyya error bound. It is further explained that the weighting constant \(\Delta _{i}\) balances the importance between clusters and the importance within clusters, which is derived by minimizing an upper bound of theoretical framework of the Bhattacharyya error bound optimality.

The Bhattacharyya error [43] is a close upper bound to the Bayes error, which is given by

$$\begin{aligned} \epsilon _B=\sum \limits _{i<j}^k\sqrt{P_iP_{j}}\int \sqrt{p_i({\textbf {X}})p_{j}({\textbf {X}})}d{\textbf {X}}, \end{aligned}$$
(1)

where \({\textbf {X}}\) is a data sample, \(P_i\) is the prior probability, and \(p_i({\textbf {X}})\) is the probability density function of the i-th class of the data.

Proposition 1

Assume \(P_i\) and \(p_i({\textbf {X}})\) are the prior probability and the probability density function of the i-th class for the training data set T, respectively, and the data samples in each class are independent and identically normally distributed. Let \(p_1({\textbf {X}}), p_2({\textbf {X}}),\ldots , p_k({\textbf {X}})\) be the Gaussian functions given by \(p_i({\textbf {X}})=\mathcal {N}({\textbf {X}}\mid {\overline{{\textbf {X}}}}_i, \varvec{\Sigma }_i)\), where \({\overline{{\textbf {X}}}}_i\) and \(\varvec{\Sigma }_i\) are the class mean and the class covariance matrix, respectively. We further suppose \(\varvec{\Sigma }_i=\varvec{\Sigma }\), \(i=1,2,\ldots ,k\), where \(\varvec{\Sigma }\) is the covariance matrix of the data set T, and \({\overline{{\textbf {X}}}}_i\) and \(\varvec{\Sigma }\) can be estimated accurately from T. Then for arbitrary projection vector \({\textbf {w}}\in \mathbb {R}^{m}\), the Bhattacharyya error bound \(\epsilon _B\) defined by (1) on the data set \(\widetilde{T}=\{\widetilde{{\textbf {X}}}_i\mid \widetilde{{\textbf {X}}}_i={\textbf {w}}^T{\textbf {X}}_i\in \mathbb {R}^{1\times n}\}\) satisfies the following [34]:

$$\begin{aligned} \begin{aligned} \epsilon _B \le&-\frac{a}{8}\sum \limits _{i<j}^k\sqrt{P_iP_j}{\Vert {\textbf {w}}^T({\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}})\Vert _2^2}+\frac{a}{8}\Delta \sum _{i=1}^{k}\sum _{s=1}^{N_i}\Vert {\textbf {w}}^T({\textbf {X}}_{is}-\overline{{\textbf {X}}}_i)\Vert _2^2\\&+\sum \limits _{i<j}^k\sqrt{P_iP_j},\\ \end{aligned} \end{aligned}$$
(2)

where \(\Delta =\frac{1}{4}\sum \nolimits _{i<j}^k\frac{\sqrt{N_iN_j}}{N}\Vert {\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}}\Vert _F^2\), \(P_i=\frac{N_i}{N}\), \(P_j=\frac{N_j}{N}\), and \(a>0\) is some constant.

Proof

We first note that \(p_i(\widetilde{{{\textbf {X}}}})=\mathcal {N}(\widetilde{{{\textbf {X}}}}\mid \widetilde{{\overline{{\textbf {X}}}}}_i, \widetilde{\varvec{\Sigma }})\), where \(\widetilde{ {{\textbf {X}}}}_i={\textbf {w}}^T{\textbf {X}}_i\), \(\widetilde{{\overline{{\textbf {X}}}}}_i={\textbf {w}}^T\overline{{\textbf {X}}}_i\in \mathbb {R}^{1\times n}\) is the i-class mean, and \(\widetilde{\varvec{\Sigma }}\) is the covariance matrix in the \(1\times n\) projected space. Denote

$$\begin{aligned} {\textbf {D}}=\begin{pmatrix}{} {\textbf {w}}^T{\textbf {X}}_1\\ \vdots \\ {\textbf {w}}^T{\textbf {X}}_N\end{pmatrix}^T\in \mathbb {R}^{n\times N} ~\text {and}~\widetilde{\overline{{\textbf {X}}}}_{{\textbf {I}}}=\begin{pmatrix} {\textbf {w}}^T\overline{{\textbf {X}}}_{t_1}\\ \vdots \\ {\textbf {w}}^T\overline{{\textbf {X}}}_{t_N}\end{pmatrix}^T\in \mathbb {R}^{n\times N}. \end{aligned}$$
(3)

Then \(\widetilde{\varvec{\Sigma }}=({\textbf {D}}-\widetilde{\overline{{\textbf {X}}}}_{{\textbf {I}}}) ({\textbf {D}}-\widetilde{\overline{{\textbf {X}}}}_{{\textbf {I}}})^T\).

According to [44], we have

$$\begin{aligned} \begin{aligned} \int \sqrt{p_i(\widetilde{{\textbf {X}}})p_{j}(\widetilde{{\textbf {X}}})}= e^{-\frac{1}{8}(\widetilde{{\overline{{\textbf {X}}}}_{i}}-\widetilde{{\overline{{\textbf {X}}}}_{j}})\widetilde{\varvec{\Sigma }}^{-1}(\widetilde{{\overline{{\textbf {X}}}}_{i}}-\widetilde{{\overline{{\textbf {X}}}}_{j}})^T}. \end{aligned} \end{aligned}$$
(4)

The upper bound of the error \(\epsilon _B\) can be estimated as

$$\begin{aligned} \begin{aligned} \epsilon _B&=\sum \limits _{i<j}^k \sqrt{P_iP_j} e^{-\frac{1}{8}(\widetilde{{\overline{{\textbf {X}}}}_{i}}-\widetilde{{\overline{{\textbf {X}}}}_{j}})\widetilde{\varvec{\Sigma }}^{-1}(\widetilde{{\overline{{\textbf {X}}}}_{i}}-\widetilde{{\overline{{\textbf {X}}}}_{j}})^T}\\&=\sum \limits _{i<j}^k \sqrt{P_iP_j} e^{-\frac{1}{8}\Vert (\widetilde{{\overline{{\textbf {X}}}}_{i}}-\widetilde{{\overline{{\textbf {X}}}}_{j}})\widetilde{\varvec{\Sigma }}^{-\frac{1}{2}}\Vert _2^2}\\&\le \sum \limits _{i<j}^k \sqrt{P_iP_j} \left( 1-\frac{a}{8}\Vert (\widetilde{{\overline{{\textbf {X}}}}_{i}}-\widetilde{{\overline{{\textbf {X}}}}_{j}})\widetilde{\varvec{\Sigma }}^{-\frac{1}{2}}\Vert _2^2\right) \\&=\sum \limits _{i<j}^k \sqrt{P_iP_j} -\frac{a}{8}\sum \limits _{i<j}^k\sqrt{P_iP_j}\cdot \Vert ({\textbf {w}}^T{{\overline{{\textbf {X}}}}_{i}}-{\textbf {w}}^T{{\overline{{\textbf {X}}}}_{j}})\widetilde{\varvec{\Sigma }}^{-\frac{1}{2}}\Vert _2^2\\&\le \sum \limits _{i<j}^k \sqrt{P_iP_j} -\frac{a}{8}\sum \limits _{i<j}^k\sqrt{P_iP_j}\cdot \frac{\Vert ({\textbf {w}}^T{{\overline{{\textbf {X}}}}_{i}}-{\textbf {w}}^T{{\overline{{\textbf {X}}}}_{j}})\Vert _2^2}{\Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2}\\&\le \sum \limits _{i<j}^k \sqrt{P_iP_j} -\frac{a}{8}\sum \limits _{i<j}^k\sqrt{P_iP_j}\cdot \Vert {\textbf {w}}^T({\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}})\Vert _2^2\\&\quad +\frac{a}{8}\sum \limits _{i<j}^k \sqrt{P_iP_j}\cdot \Delta _{ij}'\Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2, \end{aligned} \end{aligned}$$
(5)

where \(\Delta _{ij}'= \frac{1}{4}\Vert {\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}}\Vert _F^2\), \(a>0\) is some constant.

For the first inequality of (5), note that the real value function \(f(z)=e^{-z}\) is concave when \(z\in [0,b]\), \(b>0\); therefore, \(e^{-z}\le 1-\frac{1-e^{-b}}{b}z\). By taking \(a=\frac{1-e^{-b}}{b}\) and noting \(\widetilde{{\overline{{\textbf {X}}}}_{i}}={\textbf {w}}^T{\overline{{\textbf {X}}}}_{i}\), the first inequality is obtained. For the second inequality, we first note that for any \({\textbf {z}}\in \mathbb {R}^{1\times {n}}\) and an invertible \({\textbf {A}}\in \mathbb {R}^{n\times n}\), \(\Vert {\textbf {z}}\Vert _2=\Vert ({\textbf {z}}{} {\textbf {A}}){\textbf {A}}^{-1}\Vert _2\le \Vert {\textbf {z}}{} {\textbf {A}}\Vert _2\cdot \Vert {\textbf {A}}^{-1}\Vert _F\), which implies \(\Vert {\textbf {z}}{} {\textbf {A}}\Vert _2\ge \frac{\Vert {\textbf {z}}\Vert _2}{\Vert {\textbf {A}}^{-1}\Vert _F}\). By taking \({\textbf {z}}={\textbf {w}}^T{{\overline{{\textbf {X}}}}_{i}}-{\textbf {w}}^T{{\overline{{\textbf {X}}}}_{j}}\) and \({\textbf {A}}=\widetilde{\varvec{\Sigma }}^{-\frac{1}{2}}\), we get the second inequality. For the last inequality, since \(\Vert {\textbf {w}}\Vert _2=1\), \(\Vert {\textbf {w}}^T({\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}})\Vert _2^2\le \Vert {\textbf {w}}\Vert _2^2\cdot \Vert {\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}}\Vert _F^2 = \Vert {\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}}\Vert _F^2\) and \(\frac{1}{\Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2} \left( 1-\frac{1}{\Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2}\right) \le \frac{1}{4}\), we have

$$\begin{aligned} \begin{aligned}&\left( \Vert {\textbf {w}}^T({\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}})\Vert _2^2 -\frac{\Vert {\textbf {w}}^T({\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}})\Vert _2^2}{\Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2}\right) \cdot \frac{1}{\Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2}\\&\quad =\Vert {\textbf {w}}^T({\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}})\Vert _2^2\cdot \frac{1}{\Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2} \left( 1-\frac{1}{\Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2}\right) \\&\quad \le \frac{1}{4}\Vert {\textbf {w}}^T({\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}})\Vert _2^2\\&\quad \le \frac{1}{4}\Vert {\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}}\Vert _F^2\\&\quad = \Delta _{ij}'. \end{aligned} \end{aligned}$$
(6)

which implies

$$\begin{aligned} \begin{aligned}&-\frac{\Vert {\textbf {w}}^T({\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}})\Vert _2^2}{\Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2} \le -\Vert {\textbf {w}}^T({\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}})\Vert _2^2 +\Delta _{ij}'\cdot \Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2. \end{aligned} \end{aligned}$$
(7)

By multiplying \(\frac{a}{8}\sqrt{P_iP_j}\) to both sides of (7) and summing it over all \(1\le i<j\le k\), we obtain the last inequality of (5).

Take \(\Delta =\sum \nolimits _{i<j}^k\sqrt{P_iP_j}\Delta _{ij}'= \frac{1}{4}\sum \nolimits _{i<j}^k\frac{\sqrt{N_iN_j}}{N}\Vert {\overline{{\textbf {X}}}_{i}-\overline{{\textbf {X}}}_{j}}\Vert _F^2\), and note that \(\Vert \widetilde{\varvec{\Sigma }}^{\frac{1}{2}}\Vert _F^2=\sum \nolimits _{i=1}^{k}\sum \nolimits _{s=1}^{N_i}\Vert {\textbf {w}}^T({\textbf {X}}_{s}^{i}-\overline{{\textbf {X}}}_i)\Vert _2^2\), we then obtain (2). \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y.R., Bai, Y.Q. Two-dimensional k-subspace clustering and its applications on image recognition. Int. J. Mach. Learn. & Cyber. 14, 2671–2683 (2023). https://doi.org/10.1007/s13042-023-01790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-023-01790-0

Keywords

Navigation