Skip to main content
Log in

Dynamic feature selection combining standard deviation and interaction information

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Feature selection achieves dimensionality reduction by selecting some effective features from the original feature set. However, in the process of feature selection, most conventional methods do not accurately describe various correlations between features and the dynamic changes of the relation, leading to an incomplete definition of the evaluation function and affecting the classification accuracy. In this study, a dynamic feature selection method combining standard deviation and interaction information (DFS-SDII) is proposed. In DFS-SDII, conditional mutual information is introduced to measure the changes in the importance of the selected features for classification. Then, the interaction information is used to measure the synergy between the candidate and selected features. In addition, candidate features with higher importance to the class are selected by standard deviation under the condition of the same score. To evaluate the performance of DFS-SDII, nine state-of-the-art feature selection methods are selected for comparison on 16 benchmark data sets based on the classification accuracy and F-measure. The experimental results show that the proposed method performs better in terms of feature selection and has a higher classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Datta S, Pihur V (2010) Feature selection and machine learning with mass spectrometry data. Bioinform Methods Clin Res. https://doi.org/10.1007/978-1-60327-194-3_11

    Article  Google Scholar 

  2. Mahindru A, Sangal AL (2021) SemiDroid: a behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches. Int J Mach Learn Cybern 12(5):1369–1411. https://doi.org/10.1007/s13042-020-01238-9

    Article  Google Scholar 

  3. Zhao J, Zhou Y, Zhang X, Chen L (2016) Part mutual information for quantifying direct associations in networks. Proceed Natl Acad Sci 113(18):5130–5135. https://doi.org/10.1073/pnas.1522586113

    Article  Google Scholar 

  4. Zhang Q, Yang C, Wang G (2019) A sequential three-way decision model with intuitionistic fuzzy numbers. IEEE Trans Syst Man Cybern Syst 51(5):2640–2652. https://doi.org/10.1109/TSMC.2019.2908518

    Article  Google Scholar 

  5. Cheng Y, Zhang Q, Wang G, Hu BQ (2020) Optimal scale selection and attribute reduction in multi-scale decision tables based on three-way decision. Inf Sci 541(1):36–59. https://doi.org/10.1016/j.ins.2020.05.109

    Article  MathSciNet  Google Scholar 

  6. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324. https://doi.org/10.1016/S0004-3702(97)00043-X

    Article  MATH  Google Scholar 

  7. Wang A, An N, Yang J, Chen G, Li L, Alterovitz G (2017) Wrapper-based gene selection with Markov blanket. Comput Biol Med 81:11–23. https://doi.org/10.1016/j.compbiomed.2016.12.002

    Article  Google Scholar 

  8. Chen Y, Bi J, Wang JZ (2006) MILES: Multiple-instance learning via embedded instance selection. IEEE Trans Pattern Anal Mach Intell 28(12):1931–1947. https://doi.org/10.1109/TPAMI.2006.248

    Article  Google Scholar 

  9. Zhang J, Ding S, Zhang N, Shi Z (2016) Incremental extreme learning machine based on deep feature embedded. Int J Mach Learn Cybern 7(1):111–120. https://doi.org/10.1007/s13042-015-0419-5

    Article  Google Scholar 

  10. Darshan SL, Jaidhar CD (2020) An empirical study to estimate the stability of random forest classifier on the hybrid features recommended by filter based feature selection technique. Int J Mach Learn Cybern 11(2):339–358. https://doi.org/10.1007/s13042-019-00978-7

    Article  Google Scholar 

  11. Liaghat S, Mansoori EG (2019) Filter-based unsupervised feature selection using Hilbert Schmidt independence criterion. Int J Mach Learn Cybern 10(9):2313–2328. https://doi.org/10.1007/s13042-018-0869-7

    Article  Google Scholar 

  12. Abe N, Kudo M (2006) Non-parametric classifier-independent feature selection. Pattern Recogn 39(5):737–746. https://doi.org/10.1016/j.patcog.2005.11.007

    Article  MATH  Google Scholar 

  13. Zhang Z, Li S, Li Z, Chen H (2013) Multi-label feature selection algorithm based on information entropy. J Comput Res Dev 50(6):1177. https://doi.org/10.1109/TCSVT.2014.2302554

    Article  Google Scholar 

  14. Peng H, Fan Y (2017) Feature selection by optimizing a lower bound of conditional mutual information. Inf Sci 418:652–667. https://doi.org/10.1016/j.ins.2017.08.036

    Article  Google Scholar 

  15. Yang H, Moody J (1999) Data visualization and feature selection: New algorithms for nongaussian data. In: Proceedings of the 12th International Conference on Neural Information Processing Systems, MIT Press, Cambridge, MA, USA, pp 687–693

  16. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517. https://doi.org/10.1093/bioinformatics/btm344

    Article  Google Scholar 

  17. Maji P, Paul S (2011) Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data. Int J Approx Reason 52(3):408–426. https://doi.org/10.1016/j.ijar.2010.09.006

    Article  Google Scholar 

  18. Zhou P, Wang N, Zhao S (2021) Online group streaming feature selection considering feature interaction. Knowl Based Syst 226:107157. https://doi.org/10.1016/j.knosys.2021.107157

    Article  Google Scholar 

  19. Shannon CE (2001) A mathematical theory of communication. ACM SIGMOBILE Mobile Comput Commun Rev 5(1):3–55, 107157. https://doi.org/10.1145/584091.584093

    Article  MathSciNet  Google Scholar 

  20. Sebban M, Nock R (2002) A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recogn 35(4):835–846. https://doi.org/10.1016/S0031-3203(01)00084-X

    Article  MATH  Google Scholar 

  21. Murino V (1998) Structured neural networks for pattern recognition. IEEE Trans Syst Man Cybern B Cybern 28(4):553–561, 107157. https://doi.org/10.1109/3477.704294

    Article  Google Scholar 

  22. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–98, 107157

    Article  Google Scholar 

  23. Paninski L (2003) Estimation of entropy and mutual information. Neural Comput 15(6):1191–1253. https://doi.org/10.1162/089976603321780272

    Article  MATH  Google Scholar 

  24. Jakulin A, Bratko I (2004) Testing the Significance of Attribute Interactions. In: Proceedings of the twenty-first international conference on Machine learning (ICML), Association for Computing Machinery, New York, NY, USA, pp 409–416. https://doi.org/10.1145/1015330.1015377

  25. Hu L, Gao W, Zhao K, Zhang P, Wang F (2018) Feature selection considering two types of feature relevancy and feature interdependency. Expert Syst Appl 93:423–434. https://doi.org/10.1016/j.eswa.2017.10.016

    Article  Google Scholar 

  26. Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H (2017) Feature selection: A data perspective. ACM Comput Surv (CSUR) 50(6):1–45, 107157. https://doi.org/10.1145/3136625

    Article  Google Scholar 

  27. Bolrn-Canedo V, Snchez-Marono N, Alonso-Betanzos A, Bentez JM, Herrera F (2014) A review of microarray datasets and applied feature selection methods. Inf Sci 282:111–135. https://doi.org/10.1016/j.ins.2014.05.042

    Article  Google Scholar 

  28. Lewis DD (1992) Feature selection and feature extraction for text categorization. In: Proceedings of the workshop on Speech and Natural Language, Association for Computational Linguistics, USA, pp 212–217. https://doi.org/10.3115/1075527.1075574

  29. Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550, 107157. https://doi.org/10.1109/72.298224

    Article  Google Scholar 

  30. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  31. Lin D, Tang X (2006) Conditional infomax learning: an integrated framework for feature extraction and fusion. Computer vision ECCV 2006, vol 3951. Lecture Notes in Computer Science. Springer, Berlin, pp 68–82

    Chapter  Google Scholar 

  32. Zeng Z, Zhang H, Zhang R, Yin C (2015) A novel feature selection method considering feature interaction. Pattern Recogn 48(8):2656–2666. https://doi.org/10.1016/j.patcog.2015.02.025

    Article  Google Scholar 

  33. Gao W, Hu L, Zhang P (2018) Class-specific mutual information variation for feature selection. Pattern Recogn 79:328–339. https://doi.org/10.1016/j.patcog.2018.02.020

    Article  Google Scholar 

  34. Vinh NX, Zhou S, Chan J, Bailey J (2016) Can high-order dependencies improve mutual information based feature selection? Pattern Recogn 53:46–58. https://doi.org/10.1016/j.patcog.2015.11.007

    Article  MATH  Google Scholar 

  35. Zhou H, Zhang Y, Zhang Y, Liu H (2019) Feature selection based on conditional mutual information: minimum conditional relevance and minimum conditional redundancy. Appl Intell 49(3):883–896. https://doi.org/10.1007/s10489-018-1305-0

    Article  Google Scholar 

  36. Wang J, Wei JM, Yang Z, Wang SQ (2017) Feature selection by maximizing independent classification information. IEEE Trans Knowl Data Eng 29(4):828–841. https://doi.org/10.1109/TKDE.2017.2650906

    Article  Google Scholar 

  37. Dua, D., Graff, C. (2019). UCI Machine Learning Repository [https://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science

  38. Chen Z, Wu C, Zhang Y, Huang Z, Ran B, Zhong M, Lyu N (2015) Feature selection with redundancy-complementariness dispersion. Knowl-Based Syst 89:203–217. https://doi.org/10.1016/j.knosys.2015.07.004

    Article  Google Scholar 

  39. Aksakalli V, Malekipirbazari M (2016) Feature selection via binary simultaneous perturbation stochastic approximation. Pattern Recogn Lett 75:41–47. https://doi.org/10.1016/j.patrec.2016.03.002

    Article  Google Scholar 

  40. Zhang Z, Bai L, Liang Y, Hancock E (2017) Joint hypergraph learning and sparse regression for feature selection. Pattern Recogn 63:291–309. https://doi.org/10.1016/j.patcog.2016.06.009

    Article  MATH  Google Scholar 

  41. Bennasar M, Hicks Y, Setchi R (2015) Feature selection using joint mutual information maximisation. Expert Syst Appl 42(22):8520–8532. https://doi.org/10.1016/j.eswa.2015.07.007

    Article  Google Scholar 

  42. Bennasar M, Setchi R, Hicks Y (2013) Feature interaction maximisation. Pattern recognition letters 34(14):1630–1635. https://doi.org/10.1016/j.patrec.2013.04.002

  43. Bennasar M, Hicks Y, Setchi R (2015) Feature selection using joint mutual information maximisation. Expert Syst Appl 42(22):8520–8532. https://doi.org/10.1016/j.eswa.2015.07.007

    Article  Google Scholar 

  44. Gao W, Hu L, Zhang P et al (2018) Feature selection considering the composition of feature relevancy. Pattern Recogn Lett 112:70–74. https://doi.org/10.1016/j.patrec.2018.06.005

    Article  Google Scholar 

  45. Zhou H, Wang X, Zhu R (2022) Feature selection based on mutual information with correlation coefficient. Appl Intell 52(5):5457–5474. https://doi.org/10.1007/s10489-021-02524-x

    Article  Google Scholar 

  46. Zhang R, Zhang Z (2020) Feature selection with symmetrical complementary coefficient for quantifying feature interactions. Appl Intell 50(1):101–118. https://doi.org/10.1007/s10489-019-01518-0

    Article  Google Scholar 

  47. Wan J, Chen H, Li T et al (2021) Dynamic interaction feature selection based on fuzzy rough set. Inf Sci 581:891–911. https://doi.org/10.1016/j.ins.2021.10.026

    Article  Google Scholar 

  48. Fleuret F (2004) Fast binary feature selection with conditional mutual information. J Mach Learn Res 5(9):1531–1555. https://doi.org/10.1023/B:JIIS.0000047395.18103.28

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFF0704101, No. 2020YFC2003502), the National Natural Science Foundation of China (No. 62276038, No. 61876201), the Natural Science Foundation of Chongqing (cstc2019jcyj-cxttX0002, cstc2021ycjh-bgzxm0013), the key cooperation project of chongqing municipal education commission(HZ2021008) and the Doctoral Talent Training Program of Chongqing University of Posts and Telecommunications (No. BYJS202109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Zhang, Q., Wang, G. et al. Dynamic feature selection combining standard deviation and interaction information. Int. J. Mach. Learn. & Cyber. 14, 1407–1426 (2023). https://doi.org/10.1007/s13042-022-01706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01706-4

Keywords

Navigation