Skip to main content
Log in

Managerial flexibility strategies under supply and demand risks: quantity postponement vs. price postponement

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The stochastic demand and the uncertain supply/yield are common marketing operation risks. To solve these risks, firms usually apply quantity postponement strategy or price postponement strategy to improve supply chain performance. In this paper, we consider a firm’s two-stage decisions model where the firm needs to make the price decision and the quantity decision under both supply and demand risks. And the risks response depending on different postponement strategies is the key factor for the firm. When the firm adopts the quantity postponement strategy, the expected yield is equal to the market demand. Furthermore, the demand risk does not affect the firm’s pricing decision, and the supply risk forces the firm to push up the product’s sale price and to decrease order quantity. However, when the firm adopts the price postponement strategy, the expected yield is higher than market demand which indicates the firm may confront a dilemma of overproduction. Meanwhile, both demand risk and supply risk cause the decrease of order quantity. In terms of the ability of mitigating both supply and demand risks, the two postponement strategies show different performance. The quantity postponement strategy can mitigate the demand risk, but the firm can not mitigate the supply risk by adopting price postponement strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Substantially, the presence of the supply and demand uncertainty has different reasons which are unrelated. The supply uncertainty generally arises from long lead times, complicated production processes, and unpredictable factors like weather and environment. Differently, the reason of the demand uncertainty is the consumer’s consumption preference and purchasing power.

  2. In mathematics, Vieta’s formulas are formulas that relate the coefficients of a polynomial to sums and products of its roots. The theorem was provided by Viète (also known as Vieta [29]), and the general theorem was provided by Girard.

References

  1. Alderson W (1950) Marketing efficiency and the principle of postponement. Cost Profit Outlook 3:15–18

    Google Scholar 

  2. Anupindi R, Jiang L (2008) Capacity investment under postponement strategies, market competition, and demand uncertainty. Manag Sci 54(11):1876–1890

    Article  MATH  Google Scholar 

  3. Biller S, Muriel A, Zhang Y (2006) Impact of price postponement on capacity and flexibility investment decisions. Prod Oper Manag 15(2):198–214

    Article  Google Scholar 

  4. Bucklin LP (1965) Postponement, speculation and the structure of distribution channels. J Mark Res 2(1):26–31

    Article  Google Scholar 

  5. Chen L, Peng J, Liu Z, Zhao R (2017) Pricing and effort decisions for a supply chain with uncertain information. Int J Prod Res 55(1):264–284

    Article  Google Scholar 

  6. Cho SH, Tang CS (2013) Advance selling in a supply chain under uncertain supply and demand. Manuf Serv Oper Manag 15(2):305–319

    Article  Google Scholar 

  7. Dong B, Tang W, Zhou C (2018) Strategic procurement outsourcing with asymmetric cost information under scale economies. J Oper Res Soc. https://doi.org/10.1080/01605682.2017.1409155

    Article  Google Scholar 

  8. Gao J, Peng J, Liu B (2013) Uncertainty theory with applications. Fuzzy Optim Decis Mak 12(1):1–2

    Article  MATH  Google Scholar 

  9. Granot D, Yin S (2008) Price and order postponement in a decentralized newsvendor model with multiplicative and price-dependent demand. Oper Res 56(1):121–139

    Article  MathSciNet  MATH  Google Scholar 

  10. He Y (2013) Sequential price and quantity decisions under supply and demand risks. Int J Prod Econ 141(2):541–551

    Article  Google Scholar 

  11. Jiang L (2012) The implications of postponement on contract design and channel performance. Eur J Oper Res 216(2):356–366

    Article  MathSciNet  MATH  Google Scholar 

  12. Ke H, Liu J (2017) Dual-channel supply chain competition with channel preference and sales effort under uncertain environment. J Ambient Intell Humaniz Comput 8(5):781–795

    Article  Google Scholar 

  13. Kristianto Nugroho Y (2013) Developing price and production postponement strategies of substitutable product. J Model Manag 8(2):190–211

    Article  Google Scholar 

  14. Li L (2011) Assessing the relational benefits of logistics services perceived by manufacturers in supply chain. Int J Prod Econ 132(1):58–67

    Article  Google Scholar 

  15. Li T, Sethi SP, Zhang J (2017) Mitigating supply uncertainty: the interplay between diversification and pricing. Prod Oper Manag 26(3):369–388

    Article  Google Scholar 

  16. Li Y, Wei C, Cai X (2012) Optimal pricing and order policies with B2B product returns for fashion products. Int J Prod Econ 135(2):637–646

    Article  Google Scholar 

  17. Liu B (2010) Uncertainty theory: a branch of mathematics for modeling human uncertainty. Springer, Berlin

    Book  Google Scholar 

  18. Liu Y, Ha M (2010) Expected value of function of uncertain variables. J Uncertain Syst 4(3):181–186

    Google Scholar 

  19. Liu B (2015) Uncertainty theory, 5th edn. Uncertainty Theory Laboratory, Beijing

    MATH  Google Scholar 

  20. Liu Z, Zhao R, Liu X, Chen L (2016) Contract designing for a supply chain with uncertain information based on confidence level. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2016.05.054

    Article  Google Scholar 

  21. Ma W, Che Y, Huang H, Ke H (2016) Resource-constrained project scheduling problem with uncertain durations and renewable resources. Int J Mach Learn Cybern 7(4):613–621

    Article  Google Scholar 

  22. Pagh JD, Cooper MC (1998) Supply chain postponement and speculation strategies: how to choose the right strategy. J Bus Logist 19(2):13–33

    Google Scholar 

  23. Qin Z (2017) Uncertain random goal programming. Fuzzy Optim Decis Mak. https://doi.org/10.1007/s10700-017-9277-9

    Article  Google Scholar 

  24. Saghiri SS, Barnes SJ (2016) Supplier flexibility and postponement implementation: an empirical analysis. Int J Prod Econ 173(3):170–183

    Article  Google Scholar 

  25. Tang CS, Yin R (2007) Responsive pricing under supply uncertainty. Eur J Oper Res 182(1):239–255

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang O, Musa SN, Li J (2012) Dynamic pricing in the newsvendor problem with yield risks. Int J Prod Econ 139(1):127–134

    Article  Google Scholar 

  27. Trentin A, Salvador F, Forza C et al (2011) Operationalising form postponement from a decision-making perspective. Int J Prod Res 49(7):1977–1999

    Article  Google Scholar 

  28. Van Mieghem JA, Dada M (1999) Price versus production postponement: capacity and competition. Manag Sci 45(12):1639–1649

    Article  MATH  Google Scholar 

  29. Viète F (1970) Opera mathematica. Leiden

  30. Yang G, Tang W, Zhao R (2017) An uncertain workforce planning problem with job satisfaction. Int J Mach Learn Cybern 8(5):1681–1693

    Article  Google Scholar 

  31. Xu Y, Bisi A (2012) Wholesale-price contracts with postponed and fixed retail prices. Oper Res Lett 40(4):250–257

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang B, Burns N (2003) Implications of postponement for the supply chain. Int J Prod Res 41(9):2075–2090

    Article  Google Scholar 

  33. Yang B, Burns ND, Backhouse CJ (2004) Management of uncertainty through postponement. Int J Prod Res 42(6):1049–1064

    Article  MATH  Google Scholar 

  34. Yang B, Yang Y, Wijngaard J (2007) Postponement: an inter-organizational perspective. Int J Prod Res 45(4):971–988

    Article  MATH  Google Scholar 

  35. Yin Z, Ma S (2015) Incentives to improve the service level in a random yield supply chain: the role of bonus contracts. Eur J Oper Res 244(3):778–791

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang B, Peng J, Li S et al (2016) Fixed charge solid transportation problem in uncertain environment and its algorithm. Comput Ind Eng 102:186–197

    Article  Google Scholar 

  37. Zhou C, Tang W, Zhao R (2015) Optimal stopping for dynamic recruitment problem with probabilistic loss of candidates. Seq Anal Design Methods Appl 34(2):187–210

    MathSciNet  MATH  Google Scholar 

  38. Zhou C, Tang W, Zhao R (2017) Optimal consumption with reference-dependent preferences in on-the-job search and savings. J Ind Manag Optim 13(1):505–529

    MathSciNet  MATH  Google Scholar 

  39. Zhou C, Peng J, Liu Z, Dong B (2018) Optimal incentive contracts under loss aversion and inequity aversion. Fuzzy Optim Decis Mak. https://doi.org/10.1007/s10700-018-9288-1

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (nos. 71771164 and 71702129), Humanity and Social Science Youth Foundation of Ministry of Education of China (no. 17YJC630232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wansheng Tang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Uncertain theory

Appendix: Uncertain theory

Lemma 1

(Liu [17]) Let \(\xi _1\) and \(\xi _2\) be independent uncertain variables with regular uncertainty distributions \(\varPhi _1\) and \(\varPhi _2\)respectively. If the function  \(f(x_1, x_2)\) is strictly increasing with respect to \(x_1\) and  strictly decreasing with respect to \(x_2\)then \(\xi =f(\xi _1, \xi _2)\) is also an uncertain variable with the inverse uncertainty distribution

$$\begin{aligned} \varPsi ^{-1}(\alpha )=f\left( \varPhi _1^{-1}(\alpha ), \varPhi _{2}^{-1}(1-\alpha )\right) . \end{aligned}$$
(37)

Liu and Ha [18] proved that the uncertain variable \(\xi =f(\xi _1, \xi _2)\) has an expected value

$$\begin{aligned} {{\text{E}}}\left[ \xi \right] =\int ^{1}_{0}f\left( \varPhi _1^{-1}(\alpha ), \varPhi _{2}^{-1}(1-\alpha )\right) {\text{d}}\alpha . \end{aligned}$$
(38)

Lemma 2

(Liu and Ha [18]) Let \(\xi \) be an uncertain variable on the uncertainty space \(\left( \varTheta , \mathcal {L}, \mathcal {M}\right) \) with uncertain distribution \(\varPhi (\cdot )\)If  \(g: \mathcal {R}\rightarrow \mathcal {R}\) is a monotone function, the expect value of \(g(\xi )\) is

$$\begin{aligned} {{\text{E}}}\left[ g\left( \xi \right) \right] =\int ^{+\infty }_{-\infty }g\left( x\right) {\text{d}}\varPhi (x). \end{aligned}$$
(39)

Lemma 3

Let \(\xi \) be an uncertain variable with uncertainty distribution function \(\varPhi (\cdot )\)Assume that the support of \(\xi \) is \([r_{1}, r_{2}]\),  then we have

$$\begin{aligned} {{\text{E}}}\left[ \min \{\xi ,z\}\right] =z-\int ^{z}_{r_{1}}\varPhi (x){\text{d}}x, \end{aligned}$$
(40)

where \(0\le r_{1}\le z\le r_{2}\).

Lemma 4

Let \(\xi _{1}\) and \(\xi _{2}\) be independent uncertain variables with uncertainty distribution functions \(\varPhi _{1}(\cdot )\) and  \(\varPhi _{2}(\cdot )\)respectively. Then the minimum

$$\begin{aligned} \xi =\text {min}\{\xi _{1},\xi _{2}\} \end{aligned}$$
(41)

has an expected value

$$\begin{aligned} \text {E}\left[ \xi \right] =\int _{-\infty }^{+\infty }x{\text{d}}\varPsi (x), \end{aligned}$$
(42)

where \(\varPsi (x)=\text {max}\{\varPhi _{1}(x),\varPhi _{2}(x)\}\).

Based on the Lemma 4, we further get the following corollary.

Corollary 4

  1. (1)

    When there exist even points  \(0\le r_{1}=x_{0}<x_{1}<\cdots<x_{2n}<x_{2n+1}=r_{2}<+\infty \),  if  \(x\in \left[ x_{2i},x_{2i+1}\right) , i=0,1,\ldots ,n\),  then  \(\varPhi _{1}(x)\ge \varPhi _{2}(x)\).  Otherwise , \(\varPhi _{1}(x)\le \varPhi _{2}(x)\),  when  \(x\in \left[ x_{2i-1},x_{2i}\right) , i=1,2,\ldots ,n\).  Based on these assumptions, we have

    $$\begin{aligned} {{\text{E}}}\left[ \min \{\xi _{1},\xi _{2}\}\right] =r_{2}-\sum _{i=0}^{n}\int _{x_{2i}}^{x_{2i+1}}\varPhi _{1}(x){\text{d}}x -\sum _{i=1}^{n}\int _{x_{2i-1}}^{x_{2i}}\varPhi _{2}(x){\text{d}}x. \end{aligned}$$
    (43)
  2. (2)

    When there exist uneven points  \(0\le r_{1}=x_{0}<x_{1}<\cdots<{x_{2n-1}}<x_{2n}=r_{2}<+\infty \)if  \(x\in \left[ x_{2i-2},x_{2i-1}\right) , {i=1,2,\ldots ,n}\),  then  \(\varPhi _{1}(x)\ge \varPhi _{2}(x)\).  Otherwise\(\varPhi _{1}(x)\le \varPhi _{2}(x)\),  when  \(x\in \left[ x_{2i-1},x_{2i}\right] , i=1,2,\ldots ,n\).  Based on these assumptions, we have

    $$\begin{aligned} {{\text{E}}}\left[ \min \{\xi _{1},\xi _{2}\}\right] =r_{2}-\sum _{i=1}^{n}\int _{x_{2i-2}}^{x_{2i-1}}\varPhi _{1}(x){\text{d}}x -\sum _{i=1}^{n}\int _{x_{2i-1}}^{x_{2i}}\varPhi _{2}(x){\text{d}}x. \end{aligned}$$
    (44)

Proof

Let \(\eta =\min \{\xi _{1},\xi _{2}\}\). According to operational law for calculating the uncertainty distributions, we obtain

$$\begin{aligned} \mathcal {M}\{\eta \le x\}&=\mathcal {M}\{\min \{\xi _{1},\xi _{2}\}\le x\}\nonumber \\&=\mathcal {M}\{\{\xi _{1}\le x\}\cap \{\xi _{2}\le x\}\}\nonumber \\&=\mathcal {M}\{\xi _{1}\le x\}\wedge \mathcal {M}\{\xi _{2}\le x\}. \end{aligned}$$
(45)

Furthermore, when there exist even points \(0\le r_{1}=x_{0}<x_{1}<\cdots<x_{2n}<x_{2n+1}=r_{2}<+\infty \), if \(x\in \left[ x_{2i},x_{2i+1}\right] , i=0,1,\ldots ,n\), then \(\varPhi _{1}(x)\ge \varPhi _{2}(x)\). Otherwise, \(\varPhi _{1}(x)\le \varPhi _{2}(x)\), when \(x\in \left[ x_{2i-1},x_{2i}\right] , i=1,2,\ldots ,n\). Then we have

$$\begin{aligned} \varPsi (x)=\left\{ \begin{array}{lcl} 0,&{}&{}{{\text {if }}}x<x_{0}\\ \varPhi _{1}(x),&{}&{}{{\text {if }}}x_{1}>x\ge x_{0}\\ \varPhi _{2}(x),&{}&{}{{\text {if }}}x_{2}>x\ge x_{1}\\ \vdots &{}&{}\vdots \\ \varPhi _{1}(x),&{}&{}{{\text {if }}}x_{2n+1}>x\ge x_{2n}\\ 1,&{}&{}{\text {if }}x\ge x_{2n+1}.\\ \end{array} \right. \end{aligned}$$
(46)

Thus, we can obtain

$$\begin{aligned} {{\text{E}}}\left[ \min \{\xi _{1},\xi _{2}\}\right]&=\int _{0}^{+\infty }\mathcal {M}\{\eta \ge x\}{\text{d}}x-\int _{-\infty }^{0}\mathcal {M}\{\eta \le x\}{\text{d}}x\nonumber \\&=\int _{0}^{+\infty }(1-\varPsi (x)){\text{d}}x-\int _{-\infty }^{0}\varPsi (x){\text{d}}x\nonumber \\&=\int _{0}^{x_{0}}(1-0){\text{d}}x+\sum _{i=0}^{n}\int _{x_{2i}}^{x_{2i+1}}(1-\varPhi _{1}(x)){\text{d}}x \nonumber \\&\quad +\sum _{i=1}^{n}\int _{x_{2i-1}}^{x_{2i}}(1-\varPhi _{2}(x)){\text{d}}x+\int _{x_{2n+1}}^{+\infty }(1-1){\text{d}}x\nonumber \\&=x_{2n+1}-\sum _{i=0}^{n}\int _{x_{2i}}^{x_{2i+1}}\varPhi _{1}(x){\text{d}}x -\sum _{i=1}^{n}\int _{x_{2i-1}}^{x_{2i}}\varPhi _{2}(x){\text{d}}x\nonumber \\&=r_{2}-\sum _{i=0}^{n}\int _{x_{2i}}^{x_{2i+1}}\varPhi _{1}(x){\text{d}}x -\sum _{i=1}^{n}\int _{x_{2i-1}}^{x_{2i}}\varPhi _{2}(x){\text{d}}x. \end{aligned}$$
(47)

When \(\varPhi _{1}(x)\) and \(\varPhi _{2}(x)\) are regular, and their inverse uncertainty distributions are \(\varPhi _{1}^{-1}(\alpha )\) and \(\varPhi _{2}^{-1}(\alpha )\). Then we have

$$\begin{aligned} \text {E}\left[ \text {min}\{\xi _{1},\xi _{2}\}\right]&=\int _{0}^{1}\text {min} \{\varPhi _{1}^{-1}(\alpha ),\varPhi _{2}^{-1}(\alpha )\}{\text{d}}\alpha \nonumber \\&=\sum _{i=0}^{n}\int _{\alpha _{2i}}^{\alpha _{2i+1}}\varPhi _{2}^{-1}(\alpha ){\text{d}}\alpha +\sum _{i=1}^{n}\int _{\alpha _{2i- 1}}^{\alpha _{2i}}\varPhi _{1}^{-1}(\alpha ){\text{d}}\alpha , \end{aligned}$$
(48)

where \(\alpha _{i}=\varPhi _{1}(x_{i})=\varPhi _{2}(x_{i}),\ i=0,1,\ldots ,n\).

The other case is similar and omitted. \(\square \)

According to the Lemma 1, the Corollary 4 can also rewritten as follows.

Corollary 5

If  \(\varPhi _{1}(x)\)  and \(\varPhi _{2}(x)\) are regular, and their inverse uncertainty distributions are  \(\varPhi _{1}^{-1}(\alpha )\)  and  \(\varPhi _{2}^{-1}(\alpha )\)Then we can be written the expectation

$$\begin{aligned} {{\text{E}}}\left[ \min \{\xi _{1},\xi _{2}\}\right] =\sum _{i=0}^{n}\int _{\alpha _{2i}}^{\alpha _{2i+1}}\varPhi _{2}^{-1}(\alpha ){\text{d}}\alpha +\sum _{i=1}^{n}\int _{\alpha _{2i-1}}^{\alpha _{2i}}\varPhi _{1}^{-1}(\alpha ){\text{d}}\alpha , \end{aligned}$$
(49)

where  \(\alpha _{i}=\varPhi _{1}(x_{i})=\varPhi _{2}(x_{i}),\ i=0,1,\ldots ,2n+1\)Or the expectation can be also rewritten as

$$\begin{aligned} {{\text{E}}}\left[ \min \{\xi _{1},\xi _{2}\}\right] =\sum _{i=1}^{n}\int _{\alpha _{2i-2}}^{\alpha _{2i-1}}\varPhi _{2}^{-1}(\alpha ){\text{d}}\alpha +\sum _{i=1}^{n}\int _{\alpha _{2i-1}}^{\alpha _{2i}}\varPhi _{1}^{-1}(\alpha ){\text{d}}\alpha , \end{aligned}$$
(50)

where  \(\alpha _{i}=\varPhi _{1}(x_{i})=\varPhi _{2}(x_{i}),\ i=0,1,\ldots ,2n\).

Example 1

Let \(\xi _{1}\) and \(\xi _{2}\) be independent uncertain variables with uncertainty distribution functions \(\varPhi _{1}(\cdot )\) and \(\varPhi _{2}(\cdot )\), respectively. If there exists a point \(x_{1}\) which satisfies \(\varPhi _{1}(x_{1})=\varPhi _{2}(x_{1})\) and \(0\le r_{1}=x_{0}<x_{1}<x_{2}=r_{2}<+\infty \), assume that \(\varPhi _{1}(x)\ge \varPhi _{2}(x)\) when \(x\in \left[ x_{0},x_{1}\right] \), otherwise, \(\varPhi _{1}(x)\le \varPhi _{2}(x)\) when \(x\in \left[ x_{1},x_{2}\right] \). Then the minimum

$$\begin{aligned} \xi =\text {min}\{\xi _{1},\xi _{2}\} \end{aligned}$$
(51)

has an expected value

$$\begin{aligned} \text {E}\left[ \text {min}\{\xi _{1},\xi _{2}\}\right] =r_{2}-\int _{r_{1}}^{x_{1}}\varPhi _{1}(x){\text{d}}x-\int _{x_{1}}^{r_{2}}\varPhi _{2}(x){\text{d}}x. \end{aligned}$$
(52)

Lemma 5

Let \(\xi \) be an uncertain variable with uncertainty distribution function \(\varPhi (\cdot )\)Assume that the support of \(\xi \) is \([r_{1}, r_{2}]\)we have

$$\begin{aligned} {{\text{E}}}\left[ \max \{\xi ,z\}\right] =r_{2}-\int ^{r_{2}}_{z}\varPhi (x){\text{d}}x, \end{aligned}$$
(53)

where \(0\le r_{1}\le z\le r_{2}\).

Proof

Let \(\eta =\max \{\xi ,z\}\). According to operational law for calculating the uncertainty distributions, we obtain

$$\begin{aligned} \mathcal {M}\{\eta \le x\}&=\mathcal {M}\{\max \{\xi ,z\}\le x\}\nonumber \\&=\mathcal {M}\{\{\xi \le x\}\cap \{z\le x\}\}\nonumber \\&=\mathcal {M}\{\xi \le x\}\wedge \mathcal {M}\{z\le x\}. \end{aligned}$$
(54)

Furthermore, it is clear that

$$\begin{aligned} \mathcal {M}\{z\le x\}=\left\{ \begin{array}{lcl} 0,&{}&{}{\text {if }}x<z\\ 1,&{}&{}{\text {if }}x\ge z.\\ \end{array} \right. \end{aligned}$$
(55)

Substituting Eq.(55) into Eq.(45) yields

$$\begin{aligned} \mathcal {M}\{\eta \le x\}=\left\{ \begin{array}{lcl} 0,&{}&{}{\text {if }}x<z\\ \mathcal {M}\{\xi \le x\},&{}&{}{\text {if }}x\ge z.\\ \end{array} \right. \end{aligned}$$
(56)

Thus, for arbitrarily small positive number \(\varepsilon \), we can obtain

$$\begin{aligned} {{\text{E}}}\left[ \max \{\xi ,z\}\right]&=\int _{-\infty }^{+\infty }x{\text{d}}\mathcal {M}\{\eta \le x\}=\int _{r_{1}}^{r_{2}}x{\text{d}}\mathcal {M}\{\eta \le x\}\nonumber \\&=\lim _{\varepsilon \rightarrow 0}\int _{r_{1}}^{z-\varepsilon }x{\text{d}}\mathcal {M}\{\eta \ge x\}+ \lim _{\varepsilon \rightarrow 0}\int _{z-\varepsilon }^{z}x{\text{d}}\mathcal {M}\{\eta \le x\}\nonumber \\&\quad +\int _{z}^{r_{2}}x{\text{d}}\mathcal {M}\{\eta \le x\}\nonumber \\&=\lim _{\varepsilon \rightarrow 0}\int _{z-\varepsilon }^{z}x{\text{d}}\mathcal {M}\{\eta \le x\}+ \int _{z}^{r_{2}}x{\text{d}}\mathcal {M}\{\xi \le x\}\nonumber \\&=z\mathcal {M}\{\eta \le x\}-\lim _{\varepsilon \rightarrow 0}(z-\varepsilon )\mathcal {M}\{\eta \le z-\varepsilon \}+r_{2}-z\mathcal {M}\{\xi \le z\}\nonumber \\&\quad -\int _{z}^{r_{2}}\mathcal {M}\{\xi \le x\}{\text{d}}x\nonumber \\&=z\mathcal {M}\{\xi \le x\}+r_{2}-z\mathcal {M}\{\xi \le z\}-\int _{z}^{r_{2}}\mathcal {M}\{\xi \le x\}{\text{d}}x\nonumber \\&=r_{2}-\int _{z}^{r_{2}}\varPhi (x){\text{d}}x. \end{aligned}$$
(57)

The proof is complete. \(\square \)

Lemma 6

Let \(\xi _{1}\) and \(\xi _{2}\) be independent uncertain variables with uncertainty distribution function \(\varPhi _{1}(\cdot )\) and  \(\varPhi _{2}(\cdot )\)respectively. Then the maximum

$$\begin{aligned} \xi =\text {max}\{\xi _{1},\xi _{2}\} \end{aligned}$$
(58)

has an expected value

$$\begin{aligned} \text {E}\left[ \xi \right] =\int _{-\infty }^{+\infty }x{\text{d}}\varPsi (x), \end{aligned}$$
(59)

where \(\varPsi (x)=\text {min}\{\varPhi _{1}(x),\varPhi _{2}(x)\}\).

Based on the Lemma 6, we further get the following corollary.

Corollary 6

  1. (1)

    When there exist even points  \(0\le r_{1}=x_{0}<x_{1}<\cdots<x_{2n}<x_{2n+1}=r_{2}<+\infty \),  if  \(x\in \left[ x_{2i},x_{2i+1}\right) , i=0,1,\ldots ,n\),  then  \(\varPhi _{1}(x)\ge \varPhi _{2}(x)\).  Otherwise\(\varPhi _{1}(x)\le \varPhi _{2}(x)\),  when  \(x\in \left[ x_{2i-1},x_{2i}\right) , i=1,2,\ldots ,n\).  Based on these assumptions, we have

    $$\begin{aligned} {{\text{E}}}\left[ \max \{\xi _{1},\xi _{2}\}\right] =r_{2}-\sum _{i=0}^{n}\int _{x_{2i}}^{x_{2i+1}}\varPhi _{2}(x){\text{d}}x -\sum _{i=1}^{n}\int _{x_{2i-1}}^{x_{2i}}\varPhi _{1}(x){\text{d}}x. \end{aligned}$$
    (60)
  2. (2)

    When there exist uneven points  \(0\le r_{1}=x_{0}<x_{1}<\cdots<{x_{2n-1}}<x_{2n}=r_{2}<+\infty \),  if  \(x\in \left[ x_{2i-2},x_{2i-1}\right) , {i=1,2,\ldots ,n}\)then  \(\varPhi _{1}(x)\ge \varPhi _{2}(x)\).  Otherwise,  \(\varPhi _{1}(x)\le \varPhi _{2}(x)\),  when  \(x\in \left[ x_{2i-1},x_{2i}\right) , i=1,2,\ldots ,n\).  Based on these assumptions, we have

    $$\begin{aligned} {{\text{E}}}\left[ \max \{\xi _{1},\xi _{2}\}\right] =r_{2}-\sum _{i=1}^{n}\int _{x_{2i-2}}^{x_{2i-1}}\varPhi _{2}(x){\text{d}}x -\sum _{i=1}^{n}\int _{x_{2i-1}}^{x_{2i}}\varPhi _{1}(x){\text{d}}x. \end{aligned}$$
    (61)

Proof

The proof is similar to Corollary 4 and omitted. \(\square \)

Example 2

Let \(\xi _{1}\) and \(\xi _{2}\) be independent uncertain variables with uncertainty distribution functions \(\varPhi _{1}(\cdot )\) and \(\varPhi _{2}(\cdot )\), respectively. If there exists a point \(x_{1}\) which satisfies \(\varPhi _{1}(x_{1})=\varPhi _{2}(x_{1})\) and \(0\le r_{1}=x_{0}<x_{1}<x_{2}=r_{2}<+\infty \), assume that \(\varPhi _{1}(x)\ge \varPhi _{2}(x)\) when \(x\in \left[ x_{0},x_{1}\right] \). Otherwise, \(\varPhi _{1}(x)\le \varPhi _{2}(x)\) when \(x\in \left[ x_{1},x_{2}\right] \). Then the maximum

$$\begin{aligned} \xi =\text {max}\{\xi _{1},\xi _{2}\} \end{aligned}$$
(62)

has an expected value

$$\begin{aligned} \text {E}\left[ \text {max}\{\xi _{1},\xi _{2}\}\right] =r_{2}-\int _{r_{1}}^{x_{1}}\varPhi _{2}(x){\text{d}}x-\int _{x_{1}}^{r_{2}}\varPhi _{1}(x){\text{d}}x. \end{aligned}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Tang, W. & Zhou, C. Managerial flexibility strategies under supply and demand risks: quantity postponement vs. price postponement. Int. J. Mach. Learn. & Cyber. 10, 1747–1763 (2019). https://doi.org/10.1007/s13042-018-0852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0852-3

Keywords

Navigation