Skip to main content
Log in

Local receptive field based extreme learning machine with three channels for histopathological image classification

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The classification of histopathological images is a challenging task in the study of real-life medicine owing to the diverse geometrical structures and different histology features. This paper proposes a framework called Local Receptive Field based Extreme Learning Machine with Three Channels (3C-LRF-ELM), which can automatically extract histopathological features to diagnose whether there is a disease. We conduct experiments on the real-world image dataset that consists of mammalian lung, kidney and spleen organ images provided by the animal diagnostics lab (ADL) Pennsylvania State University. The training sets are consisted of overlapping blocks which are randomly extracted from arbitrary 40 images of each type image in the ADL dataset. The remaining images are equally divided into 850 blocks, and then they are given to the model 3C-LRF-ELM to generate the labels. The final label of each image is defined by the optimal threshold \(\alpha\). The 3C-LRF-ELM can be single layer network or multi-layer network. In this paper, considering the computational complexity, we choose the single layer 3C-LRF-ELM and two layers 3C-LRF-ELM structure to analyze the influence of the number of layers on the experimental results. The experimental results show that the single layer 3C-LRF-ELM structure is better than two layers 3C-LRF-ELM. Compared to the Discriminative Feature-oriented Dictionary Learning, the single layer 3C-LRF-ELM has a better classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ge Q, Shao T, Yang Q, Shen X, Wen C (2016) Multisensor nonlinear fusion methods based on adaptive ensemble fifth-degree iterated cubature information filter for biomechatronics. IEEE Trans Syst Man Cybern 46(7):912–925

    Article  Google Scholar 

  2. Magoulas GD, Prentza A (2001) Machine learning in medical applications[M]//Machine learning and its applications. Springer, Berlin, Heidelberg, pp 300–307

    Book  MATH  Google Scholar 

  3. Lorente D, Martłnez-Martłnez F, Ruprez MJ et al (2017) A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning. Expert Syst Appl 71:342–357

    Article  Google Scholar 

  4. Drukker K, Huynh BQ, Giger ML et al (2017) Deep learning and three-compartment breast imaging in breast cancer diagnosis. Medical imaging 2017: computer-aided diagnosis. Int Soc Opt Photonics 10134:101341F

    Google Scholar 

  5. Dundar MM et al (2011) Computerized classification of intraductal breast lesions using histopathological images. IEEE Trans Signal Process 58(7):1977–1984

    Google Scholar 

  6. Ehehalt S, Wiegand S, Kerner A et al (2017) Diabetes screening in overweight and obese children and adolescents: choosing the right test. Eur J Pediatr 176(1):89–97

    Article  Google Scholar 

  7. Takahashi N, Kinoshitaa T, Ohmuraa T et al (2017) Automated method to compute Evans index for diagnosis of idiopathic normal pressure hydrocephalus on brain CT images. Soc Photo-Optical Instrum Eng 10134:101342C

    Google Scholar 

  8. Huang H, Shen L, Ford J, Gao L, Pearlman J (2005) Early lung cancer detection based on registered perfusion MRI. J Oncol 15:1080–1084

    Google Scholar 

  9. Depeursinge A, Racoceanu D, Iavindrasana J, Cohen G, Platon A, Poletti PA, Muller H (2011) Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography. Artif Intell Med 50:13–21

    Article  Google Scholar 

  10. Diciotti S, Lombardo S, Falchini M, Picozzi G, Mascalchi M (2011) Automated segmentation refinement of small lung nodules in CT scans by local shape analysis. IEEE Trans Biomed Eng 58(12):3418–3428

    Article  Google Scholar 

  11. Gurcan MN, Madabhushi A, Rajpoot N (2010) Pattern recognition in histopathological images: An ICPR 2010 contest[M] // recognizing patterns in signals, speech, images and videos. Springer, Berlin, Heidelberg, pp 226–234

    Google Scholar 

  12. Vannagell JR, Donaldson ES, Wood EG, Parker JC (1978) The significance of vascular invasion and lymphocytic infiltration in invasive cervical cancer. Cancer 41(1):228–234

    Article  Google Scholar 

  13. Gurcan M et al (2009) Histopathological image analysis: a review. IEEE Rev Biomed Eng 2:147–171

    Article  Google Scholar 

  14. Chapelle O, Haffner P, Vapnik VN (1999) Support vector machines for histogram-based image classification. IEEE Trans Neural Netw 10(5):1055–1064

    Article  Google Scholar 

  15. Unser M, Aldroubi A, Laine A (2003) Guest editorial: Wavelets in medical imaging. IEEE Trans Med Imag 22(3):285–288

    Article  Google Scholar 

  16. Ozdemir E, Gunduz-Demir C (2013) A hybrid classification model for digital pathology using structural and statistical pattern recognition. IEEE Trans Med Imag 32(2):474–483

    Article  Google Scholar 

  17. Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J (2008) Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. IEEE Int Symp Biomed Imaging 29:496–499

    Google Scholar 

  18. Vu TH, Mousavi HS, Monga V et al (2016) Histopathological image classification using discriminative feature-oriented dictionary learning. IEEE Trans Med Imaging 35(3):738–751

    Article  Google Scholar 

  19. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  20. Huang GB, Bai Z, Kasun LLC et al (2015) Local receptive fields based extreme learning machine. IEEE Comput Intell Mag 10(2):18–29

    Article  Google Scholar 

  21. Lv Q, Niu X, Dou Y et al (2016) Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine. IEEE Geosci Remote Sens Lett 13(3):434–438

    Google Scholar 

  22. Cao W, Wang X, Ming Z et al (2017) A review on neural networks with random weights. Neurocomputing 275:278–287

    Article  Google Scholar 

  23. Liu H, Qin J, Sun F, Guo D (2017) Extreme kernel sparse learning for tactile object recognition. IEEE Trans Cybern 47(12):4509–4520

    Article  Google Scholar 

  24. Fu A, Wang X (2014) A study on residence error of training an extreme learning machine and its application to evolutionary algorithms. Neurocomputing 146(1):75–82

    Article  Google Scholar 

  25. Zhang L, Zhang D (2015) Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans Inst Meas 64(7):1790–1801

    Article  Google Scholar 

  26. Zhang L, Yang J, Zhang D (2017) Domain class consistency based transfer learning for image classification across domains. Inf Sci 418:242–257

    Article  Google Scholar 

  27. Zhang L, Zhang D (2016) Evolutionary cost-sensitive extreme learning machine. IEEE Trans Neural Netw Learn Syst 28(12):3045–3060

    Article  MathSciNet  Google Scholar 

  28. Zhang L, Zhang D (2016) Robust visual knowledge transfer via extreme learning machine based domain adaptation. IEEE Trans Image Process 25(10):4959–4973

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang Y, Wu QM (2016) Multilayer extreme learning machine with subnetwork nodes for representation learning. IEEE Trans Cybern 46(11):2570–2583

    Article  Google Scholar 

  30. Zhu H, Tsang E, Wang X, Ashfaq RAR (2017) Monotonic classification extreme learning machine. Neurocomputing 225:205–213

    Article  Google Scholar 

  31. Zhang L, He Z, Liu Y (2017) Deep object recognition across domains based on adaptive extreme learning machine. Neurocomputing 239:194–203

    Article  Google Scholar 

  32. Ge Q, Shao T, Duan Z, Wen C (2016) Performance analysis of the kalman filter with mismatched measurement noise covariance. IEEE Trans Autom Control 61(12):4014–4019

    Article  MATH  Google Scholar 

  33. Ge Q, Shao T, Chen S, Wen C (2017) Carrier tracking estimation analysis by using the extended strong tracking filtering. IEEE Trans Industr Electron 64(2):1415–1424

    Article  Google Scholar 

  34. Liu H, Wu Y, Sun F, Fang B, Guo D (2018) Weakly paired multimodal fusion for object recognition. IEEE Trans Autom Sci Eng 15(2):784–795

    Article  Google Scholar 

  35. Liu H, Sun F, Fang B, Lu S (2018) Multi-modal measurements fusion for surface material categorization. IEEE Trans Instrum Meas 67(2):246–256

    Article  Google Scholar 

  36. Liu H, Yu Y, Sun F, Gu J (2017) Visual-tactile fusion for object recognition. IEEE Trans Autom Sci Eng 14(2):996–1008

    Article  Google Scholar 

  37. Liu H, Guo D, Sun F (2016) Object recognition using tactile measurements: Kernel sparse coding methods. IEEE Trans Instrum Meas 65(3):656–665

    Article  Google Scholar 

  38. Chacko BP, Krishnan VRV, Raju G et al (2012) Handwritten character recognition using wavelet energy and extreme learning machine. Int J Mach Learn Cybern 3(2):149–161

    Article  Google Scholar 

  39. Fu A, Dong C, Wang L (2015) An experimental study on stability and generalization of extreme learning machines. Int J Mach Learn Cybern 6(1):129–135

    Article  Google Scholar 

  40. Balasundaram S, Gupta D (2016) On optimization based extreme learning machine in primal for regression and classification by functional iterative method. Int J Mach Learn Cybern 7(5):707–728

    Article  Google Scholar 

  41. Dong LT, Mintram R (2010) Genetic Algorithm-Neural Network (GANN): a study of neural network activation functions and depth of genetic algorithm search applied to feature selection. Int J Mach Learn Cybern 1(1–4):75–87

    Google Scholar 

  42. Liu H, Sun F, Guo D, Fang B (2017) Structured output-associated dictionary learning for haptic understanding. IEEE Trans Syst Man Cybern Syst 47(7):1564–1574

    Article  Google Scholar 

  43. Redsell SA, Weng S, Swift JA et al (2016) Validation, optimal threshold determination, and clinical utility of the infant risk of overweight checklist for early prevention of child overweight. Child Obes 12(3):202–209

    Article  Google Scholar 

  44. Alexe G, Dalgin GS, Scanfeld D, Tamayo P et al (2007) High expression of lymphocyte-associated genes in node negative her2+ breast cancers correlates with lower recurrence rates. Cancer Res 67(22):669–676

    Article  Google Scholar 

  45. Tong B, Xu C (2016) A stone texture classification method based on local receptive field extreme learning machine. J Minnan Normal Univ (Nat.Sci.) 29(3):27–36

    Google Scholar 

  46. Swain G, Lenka SK (2012) A Better RGB Channel Based Image Steganography Technique. In: Krishna PV, Babu MR, Ariwa E (eds) Global trends in information systems and software applications. Communications in Computer and Information Science. Springer, Berlin Heidelberg

  47. Tiwari N, Shandilya M (2010) Secure RGB image steganography from pixel indicator to triple algorithm—an incremental growth. Int J Secur Appl 4(4):53–62

    Google Scholar 

  48. Li B, Hui M, Zhu Y et al (2016) A path planner based on multivariant optimization algorithm with absorption. Int J Mach Learn Cybern 8(6):1–8

    Google Scholar 

  49. Mallick S, Kar R, Mandal D et al (2017) Optimal sizing of CMOS analog circuits using gravitational search algorithm with particle swarm optimization. Int J Mach Learn Cybern 8(1):309–331

    Article  Google Scholar 

  50. Agarwal S (2016) Critical parameter analysis of Vertical Hoeffding Tree for optimized performance using SAMOA. Int J Mach Learn Cybern 8(4):1–14

    Google Scholar 

  51. Shi Y, Gao Y, Yang Y et al (2013) Multimodal sparse representation-based classification for lung needle biopsy images. IEEE Trans Biomed Eng 60(10):2675–2685

    Article  Google Scholar 

  52. Ge Q, Wen C, Duan S (2014) Fire localization based on range-range-range model for limited interior space. IEEE Trans Instrum Meas 63(9):2223–2237

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant U1613212 and 61673238, in part by the National High-Tech Research and Development Plan under Grant 2015AA042306, in part by the National Key R&D Program of China under Grant No.20-16YFB0100903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaping Liu.

Ethics declarations

Conflict of interest

Jing Fang, Xinying Xu, Huaping Liu, and Fuchun Sun declare that they no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Xu, X., Liu, H. et al. Local receptive field based extreme learning machine with three channels for histopathological image classification. Int. J. Mach. Learn. & Cyber. 10, 1437–1447 (2019). https://doi.org/10.1007/s13042-018-0825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0825-6

Keywords

Navigation