Skip to main content
Log in

An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, an efficient modified Differential Evolution algorithm, named EMDE, is proposed for solving constrained non-linear integer and mixed-integer global optimization problems. In the proposed algorithm, new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best,better and the worst individuals among the three randomly selected vectors is introduced. The proposed novel approach to mutation operator is shown to enhance the global and local search capabilities and to increase the convergence speed of the new algorithm compared with basic DE. EMDE uses Deb’s constraint handling technique based on feasibility and the sum of constraints violations without any additional parameters. In order to evaluate and analyze the performance of EMDE, Numerical experiments on a set of 18 test problems with different features, including a comparison with basic DE and four state-of-the-art evolutionary algorithms are executed. Experimental results indicate that in terms of robustness, stability and efficiency, EMDE is significantly better than other five algorithms in solving these test problems. Furthermore, EMDE exhibits good performance in solving two high-dimensional problems, and it finds better solutions than the known ones. Hence, EMDE is superior to the compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mohamed AW, Sabry HZ (2012) Constrained optimization based on modified differential evolution algorithm. Inf Sci 194:171–208

    Article  Google Scholar 

  2. Costa L, Oliveira P (2001) Evolutionary algorithms approach to the solution of mixed non-linear programming. Comput Chem Eng 25:257–266

    Article  Google Scholar 

  3. Lin YC, Hwang KS, Wang FS (2004) A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems. Comput Math Appl 47:1295–1307

    Article  MathSciNet  MATH  Google Scholar 

  4. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design, ASME Y. Mech Des 112:223–229

    Google Scholar 

  5. Dua V, Pistikopoulos EN (1998) Optimization techniques for process synthesis and material design under uncertainty. Chem Eng Res Des 76(3):408–416

    Article  Google Scholar 

  6. Catalão JPS, Pousinho HMI, Mendes VMF (2010) Mixed-integer nonlinear approach for the optimal scheduling of a head-dependent hydro chain. Electr Power Syst Res 80(8):935–942

    Article  Google Scholar 

  7. Garroppo RG, Giordano S, Nencioni G, Scutellà MG (2013) Mixed integer non-linear programming models for green network design. Comput Oper Res 40(1):273–281

    Article  MATH  Google Scholar 

  8. Maldonado S, Pérez J, Weber R, Labbé M (2014) Feature selection for support vector machines via mixed integer linear programming. Inf Sci 279(20):163–175

    Article  MathSciNet  MATH  Google Scholar 

  9. Çetinkaya C, Karaoglan I, Gökçen H (2013) Two-stage vehicle routing problem with arc time windows: a mixed integer programming formulation and a heuristic approach. Eur J Oper Res 230(3):539–550

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu P, Whitaker A, Pistikopoulos EN, Li Z (2011) A mixed-integer programming approach to strategic planning of chemical centres: a case study in the UK. Comput Chem Eng 35(8):1359–1373

    Article  Google Scholar 

  11. Xu G, Papageorgiou LG (2009) A mixed integer optimisation model for data classification. Comput Ind Eng 56(4):1205–1215

    Article  Google Scholar 

  12. Grossmann IE, Sahinidis NV (eds) (2002) Special issue on mixed-integer programming and its application to engineering, Part I, Optim. Eng., Kluwer Academic Publishers, Netherlands, vol. 3 (4)

  13. Grossmann IE, Sahinidis NV (eds) (2002) Special issue on mixed-integer programming and its application to engineering, Part II, Optim. Eng., Kluwer Academic Publishers, Netherlands, vol. 4 (1)

  14. Hsieh Y-C et al (2015) Solving nonlinear constrained optimization problems: an immune evolutionary based two-phase approach. Appl Math Model. doi:10.1016/j.apm.2014.12.019

    MathSciNet  Google Scholar 

  15. Ng CK, Zhang LS, Li D, Tian WW (2005) Discrete filled function method for discrete global optimization. Comput Optim Appl 31(1):87–115

    Article  MathSciNet  MATH  Google Scholar 

  16. Gupta OK, Ravindran A (1985) Branch and bound experiments in convex nonlinear integer programming. Manag Sci 31(12):1533–1546

    Article  MathSciNet  MATH  Google Scholar 

  17. Borchers B, Mitchell JE (1994) An improved branch and bound algorithm for mixed integer nonlinear programming. Comput Oper Res 21:359–367

    Article  MathSciNet  MATH  Google Scholar 

  18. Geoffrion AM (1972) Generalized Benders decomposition. J Optim Theory Appl 10:237–260

    Article  MathSciNet  MATH  Google Scholar 

  19. DuranMA GI (1986) An outer approximation algorithm for a class of mixed-integer nonlinear programs. Math Program 36(3):307–339

    Article  MathSciNet  Google Scholar 

  20. Fletcher R, Leyffer S (1994) Solving mixed-integer programs by outer approximation. Math Program 66(1–3):327–349

    Article  MathSciNet  MATH  Google Scholar 

  21. Quesada I, Grossmann IE (1992) An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput Chem Eng 16(10–11):937–947

    Article  Google Scholar 

  22. Westerlund T, Pettersson F (1995) A cutting plane method for solving convex MINLP problems. Comput Chem Eng 19:S131–S136

    Article  Google Scholar 

  23. Lee S, Grossmann IE (2000) New algorithms for nonlinear generalized disjunctive programming. Comput Chem Eng 24:2125–2142

    Article  Google Scholar 

  24. Bonami P, Biegler LT, Conn AR, Cornuéjols G, Grossmann IE, Laird CD, Lee J, Lodi A, Margot F, Sawaya N, Wächter A (2008) An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim 5:186–204

    Article  MathSciNet  MATH  Google Scholar 

  25. Abhishek K, Leyffer S, Linderoth JT (2010) FilMINT: an outer-approximation-based solver for nonlinear mixed integer programs. Inf J Comput 22:555–567

    Article  MATH  Google Scholar 

  26. Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed-integer nonlinear optimization. Acta Num. 22:1–131

    Article  MathSciNet  MATH  Google Scholar 

  27. Liberti L, Cafieri S, Tarissan F (2009) Reformulations in mathematical programming: a computational approach. In: Abraham A, Hassanien AE, Siarry P (eds) Foundations on computational intelligence, studies in computational intelligence, vol 203. Springer, New York, pp 153–234

    Google Scholar 

  28. D’Ambrosio C, Lodi A (2011) Mixed integer nonlinear programming tools: a practical overview. In: 4OR 9, No. 4, 2011, pp. 329–349 (cit. on p. 13)

  29. Trespalacios F, Grossmann IE (2014) Review of mixed-integer nonlinear and generalized disjunctive programming Methods. Chem Ing Tech 86:991–1012

    Article  Google Scholar 

  30. Burer S, Letchford AN (2012) Non-convex mixed-integer nonlinear programming: a survey. Surveys Oper Res Manag Sci 17(2):97–106

    MathSciNet  Google Scholar 

  31. Grossmann IE (2002) Review of non-linear mixed integer and disjunctive programming techniques. Optim Eng 3:227–252

    Article  MathSciNet  MATH  Google Scholar 

  32. Cardoso MF, Salcedo RL, Feyo de Azevedo S, Barbosa D (1997) A simulated annealing approach to the solution of minlp problems. Comput Chem Eng 21(12):1349–1364

    Article  Google Scholar 

  33. Rosen SL, Harmonosky CM (2005) An improved simulated annealing simulation optimization method for discrete parameter stochastic systems. Comput Oper Res 32:343–358

    Article  MathSciNet  MATH  Google Scholar 

  34. Glover F (2006) Parametric tabu-search for mixed integer programs. Comput Oper Res 33(9):2449–2494

    Article  MathSciNet  MATH  Google Scholar 

  35. Hua Z, Huang F (2006) A variable-grouping based genetic algorithm for large-scale integer programming. Inf Sci 176(19):2869–2885

    Article  MathSciNet  MATH  Google Scholar 

  36. Kesen SE, Das SK, Güngör Z (2010) A genetic algorithm based heuristic for scheduling of virtual manufacturing cells (VMCs). Comput Oper Res 37(6):1148–1156

    Article  MATH  Google Scholar 

  37. Turkkan N (2003) Discrete optimization of structures using a floating-point genetic algorithm. In: Annual conference of the Canadian society for civil engineering, Moncton, Canada

  38. Yokota T, Gen M, Li YX (1996) Genetic algorithm for non-linear mixed integer programming problems and its applications. Comput Ind Eng 30:905–917

    Article  Google Scholar 

  39. Wasanapradit T, Mukdasanit N, Chaiyaratana N, Srinophakun T (2011) Solving mixed-integer nonlinear programming problems using improved genetic algorithms. Korean J Chem Eng 28(1):32–40

    Article  Google Scholar 

  40. Deep K, Singh KP, Kansal ML, Mohan C (2009) A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl Math Comput 212(2):505–518

    MathSciNet  MATH  Google Scholar 

  41. Cai J, Thierauf G (1996) Evolution strategies for solving discrete optimization problems. Adv Eng Softw 25:177–183

    Article  Google Scholar 

  42. Costa L, Oliveira P Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Comput Chem Eng, 25(2–3):257-266

  43. Cao YJ, Jiang L, Wu QH (2000) An evolutionary programming approach to mixed-variable optimization problems. Appl Math Model 24:931–942

    Article  MATH  Google Scholar 

  44. Mohan C, Nguyen HT (1999) A controlled random search technique incorporating the simulating annealing concept for solving integer and mixed integer global optimization problems. Comput Opti Appl 14:103–132

    Article  MATH  Google Scholar 

  45. Woon SF, Rehbock V (2010) A critical review of discrete filled function methods in solving nonlinear discrete optimization problems. Appl Math Comput 217(1):25–41

    MathSciNet  MATH  Google Scholar 

  46. Yongjian Y, Yumei L (2007) A new discrete filled function algorithm for discrete global optimization. J Comput Appl Math 202(2):280–291

    Article  MathSciNet  MATH  Google Scholar 

  47. Socha K (2004) ACO for continuous and mixed-variable optimization. Ant colony, optimization and swarm intelligence. Springer, Berlin, pp 25–36

    Book  Google Scholar 

  48. Schlüter M, Egea JA, Banga JR (2009) Extended ant colony optimization for non-convex mixed integer nonlinear programming. Comput Oper Res 36(7):2217–2229

    Article  MathSciNet  MATH  Google Scholar 

  49. Yiqing L, Xigang Y, Yongjian L (2007) An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput Chem Eng 31(3):153–162

    Article  Google Scholar 

  50. Yue T, Guan-zheng T, Shu-guang D (2014) Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems. J Central South Univ 21:2731–2742

    Article  Google Scholar 

  51. Gao Y, Ren Z, Gao Y (2011) Modified differential evolution algorithm of constrained nonlinear mixed integer programming problems. Inf Technol J 10(11):2068–2075

    Article  Google Scholar 

  52. Lin YC, Hwang KS, Wang FS (2004) A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems. Comput Math Appl 47(8–9):1295–1307

    Article  MathSciNet  MATH  Google Scholar 

  53. Li H, Zhang L (2014) A discrete hybrid differential evolution algorithm for solving integer programming problems. Eng Optim 46(9):1238–1268

    Article  MathSciNet  Google Scholar 

  54. Mohamed AW (2015) An improved differential evolution algorithm with triangular mutation for global numerical optimization. Comput Ind Eng 85:359–375

    Article  Google Scholar 

  55. Storn R, Price K (1995) Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces”, Technical Report TR-95-012, ICSI http://http.icsi.berkeley.edu/~storn/litera.html

  56. Storn R, Price K (1997) Differential Evolution- a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  57. Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Hoboken

    Google Scholar 

  58. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  59. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186:311–338

    Article  MATH  Google Scholar 

  60. Venkatraman S, Yen GG (2005) A generic framework for constrained optimization using genetic algorithms. IEEE Trans Evol Comput 9(4):424–435

    Article  Google Scholar 

  61. Storn R, Price K (1997) Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  62. Fan HY, Lampinen J (2003) A trigonometric mutation operation to differential evolution. J Global Optim 27(1):105–129

    Article  MathSciNet  MATH  Google Scholar 

  63. Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization, 1st edn. Springer, New York

    MATH  Google Scholar 

  64. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  65. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation Strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  66. Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  67. Zhang JQ, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  68. Feoktistov V (2006) Differential evolution. Berlin, Germany, Springer-verlag, In Search of Solutions

    MATH  Google Scholar 

  69. Mezura-Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9(1):1–17

    Article  MATH  Google Scholar 

  70. Dong N, Wang Y (2014) A memetic differential evolution algorithm based on dynamic preference for constrained optimization problems. J Appl Math, Article ID 606019, p 15. doi:10.1155/2014/606019

  71. Lampinen J, Zelinka I (1999) Mixed integer-discrete-continuous optimization by differential evolution, Part 1: the optimization method. In: Ošmera P (ed.) (1999). Proceedings of Mendel 99, 5th international Mendel conference on soft computing, Brno, Czech Republic

  72. Omran MGH, Engelbrecht AP (2007) Differential evolution for integer programming problems, IEEE congress on evolutionary computation, pp. 2237–2242

  73. Li Y, Gen M (1996) Nonlinear mixed integer programming problems using genetic algorithm and penalty function. IEEE Int Conf Syst Man Cybernet 4:2677–2682

    Article  Google Scholar 

  74. Lu H, Chen W (2008) Self-adaptive velocity particle swarm optimization for solving constrained optimization problems. J Global Optim 41:427–445

    Article  MathSciNet  MATH  Google Scholar 

  75. Conley W (1984) Computer optimization techniques. Petrocelli Books, Princeton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Wagdy Mohamed.

Appendix

Appendix

Corrections on problems 6, 16 and 17.

Based on self check, there are few differences in problems 6, 16 and 17 in Ref. [40] from the original documents. Thus, the corrections on these problems are as follows.

Problem

Objective function or constraints

Ref. [40]

Correction

Original references

6

Constraint

x 4

3x 4

[32]

16

Constraint 1

9x 1

8x 1

[75]

17

Objective function

\(15x_{35}^{35} ,3x_{94}^{2}\)

\(15x_{35}^{3} ,3x_{94}^{2}\)

[75]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A.W. An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems. Int. J. Mach. Learn. & Cyber. 8, 989–1007 (2017). https://doi.org/10.1007/s13042-015-0479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0479-6

Keywords

Navigation