Skip to main content

Advertisement

Log in

A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke that occurs following rupture of a cerebral aneurysm. Acute inflammation and secondary delayed inflammatory responses, both largely controlled by cytokines, work together to create high mortality and morbidity for this group. The trajectory and time course of cytokine change must be better understood in order to effectively manage unregulated inflammation and improve patient outcomes following aSAH. A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three different search phrases (“cytokines and subarachnoid hemorrhage,” “cytokine levels and subarachnoid hemorrhage,” and “cytokine measurement and subarachnoid hemorrhage”) were applied across three databases (PubMed, SCOPUS, and the Cochrane Library). Our procedures returned 856 papers. After application of inclusion/exclusion criteria, 95 preclinical animal studies and 41 clinical studies remained. Across studies, 22 different cytokines had been investigated, 5 different tissue types were analyzed, and 3 animal models were utilized. Three main pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) demonstrated reliable increases following aSAH across the included studies. While this is a promising area of research for potential therapeutics, there are gaps in the knowledge base that bar progress for clinical translation of this information. In particular, there is a need for investigations that explore the systemic inflammatory response following injury in a more diverse number of cytokines, the balance of specific pro-/anti- inflammatory cytokines, and how these biomarkers relate to patient outcomes and recovery over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. D’Souza S. Aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2015;27(3):222–40.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53.

    Article  PubMed  Google Scholar 

  3. Lantigua H, Ortega-Gutierrez S, Schmidt JM, Lee K, Badjatia N, Agarwal S, Claassen J, Connolly ES, Mayer SA. Subarachnoid hemorrhage: who dies, and why? Crit Care. 2015;19(1):309.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aisiku I, Edlow JA, Goldstein J, Thomas LE. An evidence-based approach to diagnosis and management of subarachnoid hemorrhage in the emergency department. Emerg Med Pract. 2014;16(10):1–29 (quiz 29–30).

    PubMed  Google Scholar 

  5. van Lieshout JH, Dibué-Adjei M, Cornelius JF, Slotty PJ, Schneider T, Restin T, Boogaarts HD, Steiger HJ, Petridis AK, Kamp MA. An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurg Rev. 2018;41(4):917–30.

    Article  PubMed  Google Scholar 

  6. Zeiler FA, Thelin EP, Czosnyka M, Hutchinson PJ, Menon DK, Helmy A: Cerebrospinal fluid and microdialysis cytokines in aneurysmal subarachnoid hemorrhage: a scoping systematic review. Frontiers in Neurology 2017, 8(379).

  7. Gong J, Zhu Y, Yu J, Jin J, Chen M, Liu W, Zhan R. Increased serum interleukin-33 concentrations predict worse prognosis of aneurysmal subarachnoid hemorrhage. Clin Chim Acta. 2018;486:214–8.

    Article  CAS  PubMed  Google Scholar 

  8. Huang LT, Li H, Sun Q, Liu M, Li WD, Li S, Yu Z, Wei WT, Hang CH. IL-33 expression in the cerebral cortex following experimental subarachnoid hemorrhage in rats. Cell Mol Neurobiol. 2015;35(4):493–501.

    Article  CAS  PubMed  Google Scholar 

  9. Chaudhry SR, Güresir E, Vatter H, Kinfe TM, Dietrich D, Lamprecht A, Muhammad S. Aneurysmal subarachnoid hemorrhage lead to systemic upregulation of IL-23/IL-17 inflammatory axis. Cytokine. 2017;97:96–103.

    Article  CAS  PubMed  Google Scholar 

  10. Chaudhry SR, Kahlert UD, Kinfe TM, Lamprecht A, Niemelä M, Hänggi D, Muhammad S: Elevated systemic IL-10 levels indicate immunodepression leading to nosocomial infections after aneurysmal subarachnoid hemorrhage (SAH) in Patients. Int J Mol Sci 2020, 21(5).

  11. Chaudhry SR, Stoffel-Wagner B, Kinfe TM, Güresir E, Vatter H, Dietrich D, Lamprecht A, Muhammad S: Elevated systemic IL-6 levels in patients with aneurysmal subarachnoid hemorrhage is an unspecific marker for post-SAH complications. Int J Mol Sci 2017, 18(12).

  12. Ahn SH, Savarraj JPJ, Parsha K, Hergenroeder GW, Chang TR, Kim DH, Kitagawa RS, Blackburn SL, Choi HA. Inflammation in delayed ischemia and functional outcomes after subarachnoid hemorrhage. J Neuroinflammation. 2019;16(1):213.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dinarello CA. Proinflammatory cytokines. Chest. 2000;118(2):503–8.

    Article  CAS  PubMed  Google Scholar 

  14. Kany S, Vollrath JT, Relja B: Cytokines in inflammatory disease. Int J Mol Sci 2019, 20(23).

  15. Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, Millar JA, Marino S, Cilfone NA, Mattila JT, Linderman JJ, et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev. 2018;285(1):147–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hou R, Garner M, Holmes C, Osmond C, Teeling J, Lau L, Baldwin DS. Peripheral inflammatory cytokines and immune balance in generalised anxiety disorder: case-controlled study. Brain Behav Immun. 2017;62:212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Musolino C, Allegra A, Innao V, Allegra AG, Pioggia G, Gangemi S. Inflammatory and anti-inflammatory equilibrium, proliferative and antiproliferative balance: the role of cytokines in multiple myeloma. Mediators Inflamm. 2017;2017:1852517.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bjerkne Wenneberg S, Odenstedt Hergès H, Svedin P, Mallard C, Karlsson T, Adiels M, Naredi S, Block L. Association between inflammatory response and outcome after subarachnoid haemorrhage. Acta Neurol Scand. 2021;143(2):195–205.

    Article  CAS  PubMed  Google Scholar 

  19. Al-Tamimi YZ, Bhargava D, Orsi NM, Teraifi A, Cummings M, Ekbote UV, Quinn AC, Homer-Vanniasinkam S, Ross S. Compartmentalisation of the inflammatory response following aneurysmal subarachnoid haemorrhage. Cytokine. 2019;123:154778.

    Article  CAS  PubMed  Google Scholar 

  20. Lenski M, Huge V, Briegel J, Tonn JC, Schichor C, Thon N. Interleukin 6 in the cerebrospinal fluid as a biomarker for onset of vasospasm and ventriculitis after severe subarachnoid hemorrhage. World Neurosurg. 2017;99:132–9.

    Article  PubMed  Google Scholar 

  21. Ridwan S, Grote A, Simon M. Interleukin 6 in cerebrospinal fluid is a biomarker for delayed cerebral ischemia (DCI) related infarctions after aneurysmal subarachnoid hemorrhage. Sci Rep. 2021;11(1):12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kao HW, Lee KW, Kuo CL, Huang CS, Tseng WM, Liu CS, Lin CP. Interleukin-6 as a prognostic biomarker in ruptured intracranial aneurysms. PLoS One. 2015;10(7):e0132115.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lv SY, Wu Q, Liu JP, Shao J, Wen LL, Xue J, Zhang XS, Zhang QR, Zhang X. Levels of interleukin-1β, interleukin-18, and tumor necrosis factor-α in cerebrospinal fluid of aneurysmal subarachnoid hemorrhage patients may be predictors of early brain injury and clinical prognosis. World Neurosurg. 2018;111:e362–73.

    Article  PubMed  Google Scholar 

  24. Roa JA, Sarkar D, Zanaty M, Ishii D, Lu Y, Karandikar NJ, Hasan DM, Ortega SB, Samaniego EA. Preliminary results in the analysis of the immune response after aneurysmal subarachnoid hemorrhage. Sci Rep. 2020;10(1):11809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gusdon AM, Savarraj J, Zhu L, Pandit PKT, Doré S, McBride DW, Choi HA, Blackburn SL. Haptoglobin genotype affects inflammation after aneurysmal subarachnoid hemorrhage. Curr Neurovasc Res. 2020;17(5):652–9.

    Article  CAS  PubMed  Google Scholar 

  26. Niwa A, Osuka K, Nakura T, Matsuo N, Watabe T, Takayasu M. Interleukin-6, MCP-1, IP-10, and MIG are sequentially expressed in cerebrospinal fluid after subarachnoid hemorrhage. J Neuroinflammation. 2016;13(1):217.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Höllig A, Thiel M, Stoffel-Wagner B, Coburn M, Clusmann H. Neuroprotective properties of dehydroepiandrosterone-sulfate and its relationship to interleukin 6 after aneurysmal subarachnoid hemorrhage: a prospective cohort study. Crit Care. 2015;19(1):231.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marbacher S, Grüter B, Schöpf S, Croci D, Nevzati E, D’Alonzo D, Lattmann J, Roth T, Bircher B, Wolfert C, et al. systematic review of in vivo animal models of subarachnoid hemorrhage: species, standard parameters, and outcomes. Transl Stroke Res. 2019;10(3):250–8.

    Article  Google Scholar 

  29. Kamp MA, Dibué M, Sommer C, Steiger HJ, Schneider T, Hänggi D. Evaluation of a murine single-blood-injection SAH model. PLoS One. 2014;9(12):e114946.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wei N, Wei Y, Li B, Pang L. Baicalein promotes neuronal and behavioral recovery after intracerebral hemorrhage via suppressing apoptosis, oxidative stress and neuroinflammation. Neurochem Res. 2017;42(5):1345–53.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang XS, Li W, Wu Q, Wu LY, Ye ZN, Liu JP, Zhuang Z, Zhou ML, Zhang X, Hang CH: Resveratrol attenuates acute inflammatory injury in experimental subarachnoid hemorrhage in rats via inhibition of TLR4 pathway. Int J Mol Sci 2016, 17(8).

  32. Tu L, Yang XL, Zhang Q, Wang Q, Tian T, Liu D, Qu X, Tian JY. Bexarotene attenuates early brain injury via inhibiting micoglia activation through PPARγ after experimental subarachnoid hemorrhage. Neurol Res. 2018;40(8):702–8.

    CAS  PubMed  Google Scholar 

  33. Li Z, Han X. Resveratrol alleviates early brain injury following subarachnoid hemorrhage: possible involvement of the AMPK/SIRT1/autophagy signaling pathway. Biol Chem. 2018;399(11):1339–50.

    Article  CAS  PubMed  Google Scholar 

  34. Hao G, Dong Y, Huo R, Wen K, Zhang Y, Liang G. Rutin inhibits neuroinflammation and provides neuroprotection in an experimental rat model of subarachnoid hemorrhage, Possibly Through Suppressing the RAGE-NF-κB Inflammatory Signaling Pathway. Neurochem Res. 2016;41(6):1496–504.

    Article  CAS  PubMed  Google Scholar 

  35. Gu X, Zheng C, Zheng Q, Chen S, Li W, Shang Z, Zhang H. Salvianolic acid A attenuates early brain injury after subarachnoid hemorrhage in rats by regulating ERK/P38/Nrf2 signaling. Am J Transl Res. 2017;9(12):5643–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng Y, Jin J, Fan L, Xu H, He P, Li J, Chen T, Ruan W, Chen G. Rolipram attenuates early brain injury following experimental subarachnoid hemorrhage in rats: possibly via regulating the SIRT1/NF-κB pathway. Neurochem Res. 2018;43(4):785–95.

    Article  CAS  PubMed  Google Scholar 

  37. Huang Q, Wang G, Hu YL, Liu JX, Yang J, Wang S, Zhang HB. Study on the expression and mechanism of inflammatory factors in the brain of rats with cerebral vasospasm. Eur Rev Med Pharmacol Sci. 2017;21(12):2887–94.

    CAS  PubMed  Google Scholar 

  38. Savarraj JP, McGuire MF, Parsha K, Hergenroeder G, Bajgur S, Ahn S, Zhu L, Espino E, Chang T, Blackburn S, et al. Disruption of thrombo-inflammatory response and activation of a distinct cytokine cluster after subarachnoid hemorrhage. Cytokine. 2018;111:334–41.

    Article  CAS  PubMed  Google Scholar 

  39. Wu Y, Pang J, Peng J, Cao F, Vitek MP, Li F, Jiang Y, Sun X. An apoE-derived mimic peptide, COG1410, alleviates early brain injury via reducing apoptosis and neuroinflammation in a mouse model of subarachnoid hemorrhage. Neurosci Lett. 2016;627:92–9.

    Article  CAS  PubMed  Google Scholar 

  40. Xie Y, Peng J, Pang J, Guo K, Zhang L, Yin S, Zhou J, Gu L, Tu T, Mu Q, et al. Biglycan regulates neuroinflammation by promoting M1 microglial activation in early brain injury after experimental subarachnoid hemorrhage. J Neurochem. 2020;152(3):368–80.

    Article  CAS  PubMed  Google Scholar 

  41. Xu G, Guo J, Sun C. Eucalyptol ameliorates early brain injury after subarachnoid haemorrhage via antioxidant and anti-inflammatory effects in a rat model. Pharm Biol. 2021;59(1):114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dong Y, Fan C, Hu W, Jiang S, Ma Z, Yan X, Deng C, Di S, Xin Z, Wu G, et al. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. J Pineal Res. 2016;60(3):253–62.

    Article  PubMed  Google Scholar 

  43. Zeng H, Shao B, Zhuang J, Peng Y, Chen H, Yu Q, Xu C, Fu X, Zhou H, Cao Y, et al. Naringenin reduces early brain injury in subarachnoid hemorrhage (SAH) mice: the role of the AMPK/SIRT3 signaling pathway. Journal of Functional Foods. 2020;72:104043.

    Article  CAS  Google Scholar 

  44. Lu Y, Zhang XS, Zhang ZH, Zhou XM, Gao YY, Liu GJ, Wang H, Wu LY, Li W, Hang CH. Peroxiredoxin 2 activates microglia by interacting with toll-like receptor 4 after subarachnoid hemorrhage. J Neuroinflammation. 2018;15(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mitsui K, Ikedo T, Kamio Y, Furukawa H, Lawton MT, Hashimoto T. TLR4 (toll-like receptor 4) mediates the development of intracranial aneurysm rupture. Hypertension. 2020;75(2):468–76.

    Article  CAS  PubMed  Google Scholar 

  46. Li P, Li X, Deng P, Wang D, Bai X, Li Y, Luo C, Belguise K, Wang X, Wei X, et al. Activation of adenosine A3 receptor reduces early brain injury by alleviating neuroinflammation after subarachnoid hemorrhage in elderly rats. Aging (Albany NY). 2020;13(1):694–713.

    Article  Google Scholar 

  47. Chen H, Yu X, Hu L, Peng Y, Yu Q, Zhou H, Xu C, Zeng H, Cao Y, Zhuang J, et al. Activation of nurr1 with amodiaquine protected neuron and alleviated neuroinflammation after subarachnoid hemorrhage in rats. Oxid Med Cell Longev. 2021;2021:1–15.

    Article  CAS  Google Scholar 

  48. Wu LY, Ye ZN, Zhuang Z, Gao Y, Tang C, Zhou CH, Wang CX, Zhang XS, Xie GB, Liu JP, et al. Biochanin A reduces inflammatory injury and neuronal apoptosis following subarachnoid hemorrhage via suppression of the TLRs/TIRAP/MyD88/NF-κB pathway. Behav Neurol. 2018;2018:1960106.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wu A, Liu R, Dai W, Jie Y, Yu G, Fan X, Huang Q. Lycopene attenuates early brain injury and inflammation following subarachnoid hemorrhage in rats. Int J Clin Exp Med. 2015;8(8):14316–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang ZY, Sun BL, Yang MF, Li DW, Fang J, Zhang S. Carnosine attenuates early brain injury through its antioxidative and anti-apoptotic effects in a rat experimental subarachnoid hemorrhage model. Cell Mol Neurobiol. 2015;35(2):147–57.

    Article  PubMed  Google Scholar 

  51. Aydin HE, Bektur NE, Ozbek Z, Oner S, Baycu C, Kilic FS. Comparison of the effects and mechanism of the curcumin with different drugs in experimental vasospasm after subarachnoid hemorrhage. Turk Neurosurg. 2017;27(6):884–93.

    PubMed  Google Scholar 

  52. Fang R, Zheng X, Zhang M. Ethyl pyruvate alleviates early brain injury following subarachnoid hemorrhage in rats. Acta Neurochir (Wien). 2016;158(6):1069–76.

    Article  Google Scholar 

  53. Xu H, Li J, Wang Z, Feng M, Shen Y, Cao S, Li T, Peng Y, Fan L, Chen J, et al. Methylene blue attenuates neuroinflammation after subarachnoid hemorrhage in rats through the Akt/GSK-3β/MEF2D signaling pathway. Brain Behav Immun. 2017;65:125–39.

    Article  CAS  PubMed  Google Scholar 

  54. Hu HM, Li B, Wang XD, Guo YS, Hui H, Zhang HP, Wang B, Huang DG, Hao DJ. Fluoxetine is neuroprotective in early brain injury via its anti-inflammatory and anti-apoptotic effects in a rat experimental subarachnoid hemorrhage model. Neurosci Bull. 2018;34(6):951–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Du C, Xi C, Wu C, Sha J, Zhang J, Li C. Ginkgo biloba extract protects early brain injury after subarachnoid hemorrhage via inhibiting thioredoxin interacting protein/NLRP3 signaling pathway. Iran J Basic Med Sci. 2020;23(10):1340–5.

    PubMed  PubMed Central  Google Scholar 

  56. Luo Y, Fang Y, Kang R, Lenahan C, Gamdzyk M, Zhang Z, Okada T, Tang J, Chen S, Zhang JH. Inhibition of EZH2 (enhancer of zeste homolog 2) attenuates neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB (trimethylation of histone 3 lysine 27/suppressor of cytokine signaling 3/tumor necrosis factor receptor family 6/nuclear factor-κB) in a rat model of subarachnoid hemorrhage. Stroke. 2020;51(11):3320–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu X, Yan J, Huang L, Araujo C, Peng J, Gao L, Liu S, Tang J, Zuo G, Zhang JH. INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun. 2021;91:587–600.

    Article  CAS  PubMed  Google Scholar 

  58. Guo Z, Hu Q, Xu L, Guo ZN, Ou Y, He Y, Yin C, Sun X, Tang J, Zhang JH. Lipoxin A4 reduces inflammation through formyl peptide receptor 2/p38 MAPK signaling pathway in subarachnoid hemorrhage rats. Stroke. 2016;47(2):490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu L, Zhang P, Zhang Z, Hu Q, He J, Liu H, Zhao J, Liang Y, He Z, Li X, et al. LXA4 ameliorates cerebrovascular endothelial dysfunction by reducing acute inflammation after subarachnoid hemorrhage in rats. Neuroscience. 2019;408:105–14.

    Article  CAS  PubMed  Google Scholar 

  60. Liu X, Zhang X, Ma K, Zhang R, Hou P, Sun B, Yuan S, Wang Z, Liu Z. Matrine alleviates early brain injury after experimental subarachnoid hemorrhage in rats possible involvement of PI3K/Akt-mediated NF-κB inhibition and Keap1/Nrf2-dependent HO-1 inductionn. Cell Mol Biol (Noisy-le-grand). 2016;62(11):38–44.

    CAS  Google Scholar 

  61. Fan LF, He PY, Peng YC, Du QH, Ma YJ, Jin JX, Xu HZ, Li JR, Wang ZJ, Cao SL, et al. Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis. Free Radic Biol Med. 2017;112:336–49.

    Article  CAS  PubMed  Google Scholar 

  62. Han M, Cao Y, Guo X, Chu X, Li T, Xue H, Xin D, Yuan L, Ke H, Li G, et al. Mesenchymal stem cell-derived extracellular vesicles promote microglial M2 polarization after subarachnoid hemorrhage in rats and involve the AMPK/NF-κB signaling pathway. Biomed Pharmacother. 2021;133:111048.

    Article  CAS  PubMed  Google Scholar 

  63. Liu W, Li R, Yin J, Guo S, Chen Y, Fan H, Li G, Li Z, Li X, Zhang X, et al. Mesenchymal stem cells alleviate the early brain injury of subarachnoid hemorrhage partly by suppression of Notch1-dependent neuroinflammation: involvement of Botch. J Neuroinflammation. 2019;16(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu F, Chen Y, Hu Q, Li B, Tang J, He Y, Guo Z, Feng H, Tang J, Zhang JH. MFGE8/Integrin β3 pathway alleviates apoptosis and inflammation in early brain injury after subarachnoid hemorrhage in rats. Exp Neurol. 2015;272:120–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Bao DJ, Xu B, Cheng CD, Dong YF, Wei XP, Niu CS. Neuroprotection mediated by the Wnt/Frizzled signaling pathway in early brain injury induced by subarachnoid hemorrhage. Neural Regen Res. 2019;14(6):1013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang Z, Guo S, Wang J, Shen Y, Zhang J, Wu Q. Nrf2/HO-1 mediates the neuroprotective effect of mangiferin on early brain injury after subarachnoid hemorrhage by attenuating mitochondria-related apoptosis and neuroinflammation. Sci Rep. 2017;7(1):11883.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen T, Wang W, Li JR, Xu HZ, Peng YC, Fan LF, Yan F, Gu C, Wang L, Chen G. PARP inhibition attenuates early brain injury through NF-κB/MMP-9 pathway in a rat model of subarachnoid hemorrhage. Brain Res. 2016;1644:32–8.

    Article  CAS  PubMed  Google Scholar 

  68. Xia DY, Zhang HS, Wu LY, Zhang XS, Zhou ML, Hang CH. Pentoxifylline alleviates early brain injury after experimental subarachnoid hemorrhage in rats: possibly via inhibiting TLR 4/NF-κB signaling pathway. Neurochem Res. 2017;42(4):963–74.

    Article  CAS  PubMed  Google Scholar 

  69. Zhong YW, Wu J, Hu HL, Li WX, Zhong Y. Protective effect 3,4-dihydroxyphenylethanol in subarachnoid hemorrhage provoked oxidative neuropathy. Exp Ther Med. 2016;12(3):1908–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peng Y, He P, Fan L, Xu H, Li J, Chen T, Ruan W, Dou Z, Chen G. Neuroprotective effects of magnesium lithospermate b against subarachnoid hemorrhage in rats. Am J Chin Med. 2018;46(6):1225–41.

    Article  CAS  PubMed  Google Scholar 

  71. Miyamoto T, Kung DK, Kitazato KT, Yagi K, Shimada K, Tada Y, Korai M, Kurashiki Y, Kinouchi T, Kanematsu Y, et al. Site-specific elevation of interleukin-1β and matrix metalloproteinase-9 in the Willis circle by hemodynamic changes is associated with rupture in a novel rat cerebral aneurysm model. J Cereb Blood Flow Metab. 2017;37(8):2795–805.

    Article  CAS  PubMed  Google Scholar 

  72. Xu YP, Tao YN, Wu YP, Zhang J, Jiao W, Wang YH, Chen T. Sleep deprivation aggravates brain injury after experimental subarachnoid hemorrhage via TLR4-MyD88 pathway. Aging (Albany NY). 2021;13(2):3101–11.

    Article  CAS  Google Scholar 

  73. Wang Y, Kong XQ, Wu F, Xu B, Bao DJ, Cheng CD, Wei XP, Dong YF, Niu CS. SOCS1/JAK2/STAT3 axis regulates early brain injury induced by subarachnoid hemorrhage via inflammatory responses. Neural Regen Res. 2021;16(12):2453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen J, Jin H, Xu H, Peng Y, Jie L, Xu D, Chen L, Li T, Fan L, He P, et al. The neuroprotective effects of necrostatin-1 on subarachnoid hemorrhage in rats are possibly mediated by preventing blood-brain barrier disruption and RIP3-mediated necroptosis. Cell Transplant. 2019;28(11):1358–72.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guo S, Li Y, Wei B, Liu W, Li R, Cheng W, Zhang X, He X, Li X, Duan C. Tim-3 deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats. Aging (Albany NY). 2020;12(21):21161–85.

    Article  CAS  Google Scholar 

  76. Zhou C, Xie G, Wang C, Zhang Z, Chen Q, Zhang L, Wu L, Wei Y, Ding H, Hang C, et al. Decreased progranulin levels in patients and rats with subarachnoid hemorrhage: a potential role in inhibiting inflammation by suppressing neutrophil recruitment. J Neuroinflammation. 2015;12(1):200.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shi SS, Zhang HB, Wang CH, Yang WZ, Liang RS, Chen Y, Tu XK. Propofol attenuates early brain injury after subarachnoid hemorrhage in rats. J Mol Neurosci. 2015;57(4):538–45.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang HB, Tu XK, Chen Q, Shi SS. Propofol reduces inflammatory brain injury after subarachnoid hemorrhage: involvement of PI3K/Akt pathway. J Stroke Cerebrovasc Dis. 2019;28(12):104375.

    Article  PubMed  Google Scholar 

  79. Shi X, Zhen L, Ding H, Chen J, Zhang S, Fu Y. Role of ATP-sensitive potassium channels and inflammatory response of basilar artery smooth muscle cells in subarachnoid hemorrhage of rabbit and immune-modulation by shikonin. Food Chem Toxicol. 2019;134:110804.

    Article  CAS  PubMed  Google Scholar 

  80. Schallner N, Pandit R, LeBlanc R 3rd, Thomas AJ, Ogilvy CS, Zuckerbraun BS, Gallo D, Otterbein LE, Hanafy KA. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest. 2015;125(7):2609–25.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Matas M, Sotošek V, Kozmar A, Likić R, Sekulić A. Effect of local anesthesia with lidocaine on perioperative proinflammatory cytokine levels in plasma and cerebrospinal fluid in cerebral aneurysm patients: study protocol for a randomized clinical trial. Medicine (Baltimore). 2019;98(42):e17450.

    Article  CAS  Google Scholar 

  82. Zhong W, Zhang Z, Zhao P, Shen J, Li X, Wang D, Li G, Su W. the impact of initial systemic inflammatory response after aneurysmal subarachnoid hemorrhage. Turk Neurosurg. 2017;27(3):346–52.

    PubMed  Google Scholar 

  83. Duris K, Lipkova J, Splichal Z, Madaraszova T, Jurajda M: Early inflammatory response in the brain and anesthesia recovery time evaluation after experimental subarachnoid hemorrhage. Transl Stroke Res. 2019;10:308–18.

  84. Savarraj J, Parsha K, Hergenroeder G, Ahn S, Chang TR, Kim DH, Choi HA. Early brain injury associated with systemic inflammation after subarachnoid hemorrhage. Neurocrit Care. 2018;28(2):203–11.

    Article  PubMed  Google Scholar 

  85. Coulibaly AP, Gartman WT, Swank V, Gomes JA, Ruozhuo L, DeBacker J, Provencio JJ. RAR-related orphan receptor gamma T (RoRγt)-related cytokines play a role in neutrophil infiltration of the central nervous system after subarachnoid hemorrhage. Neurocrit Care. 2020;33(1):140–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou Y, Jiang Y, Peng Y, Zhang M. The quantitative and functional changes of postoperative peripheral blood immune cell subsets relate to prognosis of patients with subarachnoid hemorrhage: a preliminary study. World Neurosurg. 2017;108:206–15.

    Article  PubMed  Google Scholar 

  87. Righy C, Turon R, Freitas G, Japiassú AM, Faria Neto HCC, Bozza M, Oliveira MF, Bozza FA. Hemoglobin metabolism by-products are associated with an inflammatory response in patients with hemorrhagic stroke. Rev Bras Ter Intensiva. 2018;30(1):21–7.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wang Y, Zhou S, Han Z, Yin D, Luo Y, Tian Y, Wang Z, Zhang J. Fingolimod administration improves neurological functions of mice with subarachnoid hemorrhage. Neurosci Lett. 2020;736:135250.

    Article  CAS  PubMed  Google Scholar 

  89. Blecharz-Lang KG, Wagner J, Fries A, Nieminen-Kelhä M, Rösner J, Schneider UC, Vajkoczy P. Interleukin 6-mediated endothelial barrier disturbances can be attenuated by blockade of the IL6 receptor expressed in brain microvascular endothelial cells. Transl Stroke Res. 2018;9(6):631–42.

    Article  CAS  PubMed  Google Scholar 

  90. Huang XP, Peng JH, Pang JW, Tian XC, Li XS, Wu Y, Li Y, Jiang Y, Sun XC. Peli1 Contributions in microglial activation, neuroinflammatory responses and neurological deficits following experimental subarachnoid hemorrhage. Front Mol Neurosci. 2017;10:398.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhao X, Wu J, Zhang Y, Zhu L, Lu X. Alterations of intestinal labile zinc and cytokine production following subarachnoid hemorrhage in rats. Ann Clin Lab Sci. 2016;46(6):622–6.

    CAS  PubMed  Google Scholar 

  92. Li J, Chen J, Mo H, Chen J, Qian C, Yan F, Gu C, Hu Q, Wang L, Chen G. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury after subarachnoid hemorrhage. Mol Neurobiol. 2016;53(4):2668–78.

    Article  CAS  PubMed  Google Scholar 

  93. Yin J, Li R, Liu W, Chen Y, Zhang X, Li X, He X, Duan C. Neuroprotective effect of protein phosphatase 2A/tristetraprolin following subarachnoid hemorrhage in rats. Front Neurosci. 2018;12:96.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dang X, Ding D, Cheng S, Pei H. The neuroprotective effect of triptolide on experimental subarachnoid hemorrhage in rats. Chinese Journal of Emergency Medicine. 2017;26:1268–73.

    Google Scholar 

  95. Croci D, Nevzati E, Muroi C, Schöpf S, Hornemann T, Widmer HR, Danura H, Fandino J, Marbacher S. Changes in the cerebrospinal fluid lipid profile following subarachnoid hemorrhage in a closed cranium model: correlations to cerebral vasospasm, neuronal cell death and Interleukin-6 synthesis. A pilot study. J Stroke Cerebrovasc Dis. 2020;29(9):105054.

    Article  PubMed  Google Scholar 

  96. Croci D, Nevzati E, Danura H, Schöpf S, Fandino J, Marbacher S, Muroi C. The relationship between IL-6, ET-1 and cerebral vasospasm, in experimental rabbit subarachnoid hemorrhage. J Neurosurg Sci. 2019;63(3):245–50.

    Article  PubMed  Google Scholar 

  97. Helbok R, Schiefecker AJ, Beer R, Dietmann A, Antunes AP, Sohm F, Fischer M, Hackl WO, Rhomberg P, Lackner P, et al. Early brain injury after aneurysmal subarachnoid hemorrhage: a multimodal neuromonitoring study. Crit Care. 2015;19(1):75.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wu W, Guan Y, Zhao G, Fu XJ, Guo TZ, Liu YT, Ren XL, Wang W, Liu HR, Li YQ. Elevated IL-6 and TNF-α levels in cerebrospinal fluid of subarachnoid hemorrhage patients. Mol Neurobiol. 2016;53(5):3277–85.

    Article  CAS  PubMed  Google Scholar 

  99. Matsumoto A, Nakamura T, Shinomiya A, Kawakita K, Kawanishi M, Miyake K, Kuroda Y, Keep RF, Tamiya T. Histidine-rich glycoprotein could be an early predictor of vasospasm after aneurysmal subarachnoid hemorrhage. Acta Med Okayama. 2019;73(1):29–39.

    CAS  PubMed  Google Scholar 

  100. Vlachogiannis P, Hillered L, Khalil F, Enblad P, Ronne-Engström E. Interleukin-6 levels in cerebrospinal fluid and plasma in patients with severe spontaneous subarachnoid hemorrhage. World Neurosurg. 2019;122:e612–8.

    Article  PubMed  Google Scholar 

  101. Schiefecker AJ, Dietmann A, Beer R, Pfausler B, Lackner P, Kofler M, Fischer M, Broessner G, Sohm F, Mulino M, et al. Neuroinflammation is associated with brain extracellular TAU-protein release after spontaneous subarachnoid hemorrhage. Curr Drug Targets. 2017;18(12):1408–16.

    Article  CAS  PubMed  Google Scholar 

  102. Chen YH, Cheng ZY, Shao LH, Shentu HS, Fu B. Macrophage migration inhibitory factor as a serum prognostic marker in patients with aneurysmal subarachnoid hemorrhage. Clin Chim Acta. 2017;473:60–4.

    Article  CAS  PubMed  Google Scholar 

  103. Savarraj JPJ, Parsha K, Hergenroeder GW, Zhu L, Bajgur SS, Ahn S, Lee K, Chang T, Kim DH, Liu Y, et al. Systematic model of peripheral inflammation after subarachnoid hemorrhage. Neurology. 2017;88(16):1535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang X, Peng J, Pang J, Wan W, Zhong C, Peng T, Bao K, Jiang Y. The association between serum macrophage migration inhibitory factor and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neurotox Res. 2020;37(2):397–405.

    Article  CAS  PubMed  Google Scholar 

  105. Moraes L, Trias N, Brugnini A, Grille P, Lens D, Biestro A, Grille S. TH17/Treg imbalance and IL-17A increase after severe aneurysmal subarachnoid hemorrhage. Journal of Neuroimmunology. 2020;346:577310.

    Article  CAS  PubMed  Google Scholar 

  106. Xu LB, Huang HD, Zhao M, Zhu GC, Xu Z. intranasal insulin treatment attenuates metabolic distress and early brain injury after subarachnoid hemorrhage in mice. Neurocrit Care. 2021;34(1):154–66.

    Article  CAS  PubMed  Google Scholar 

  107. Yagi K, Lidington D, Wan H, Fares JC, Meissner A, Sumiyoshi M, Ai J, Foltz WD, Nedospasov SA, Offermanns S, et al. Therapeutically targeting tumor necrosis factor-α/sphingosine-1-phosphate signaling corrects myogenic reactivity in subarachnoid hemorrhage. Stroke. 2015;46(8):2260–70.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang ZY, Sun BL, Liu JK, Yang MF, Li DW, Fang J, Zhang S, Yuan QL, Huang SL. Activation of mGluR5 attenuates microglial activation and neuronal apoptosis in early brain injury after experimental subarachnoid hemorrhage in rats. Neurochem Res. 2015;40(6):1121–32.

    Article  CAS  PubMed  Google Scholar 

  109. Cai J, Xu D, Bai X, Pan R, Wang B, Sun S, Chen R, Sun J, Huang Y. Curcumin mitigates cerebral vasospasm and early brain injury following subarachnoid hemorrhage via inhibiting cerebral inflammation. Brain Behav. 2017;7(9):e00790.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chen H, Chen L, Xie D, Niu J. Protective effects of transforming growth factor-β1 knockdown in human umbilical cord mesenchymal stem cells against subarachnoid hemorrhage in a rat model. Cerebrovasc Dis. 2020;49(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang XH, Peng L, Zhang J, Dong YP, Wang CJ, Liu C, Xia DY, Zhang XS. Berberine ameliorates subarachnoid hemorrhage injury via induction of sirtuin 1 and inhibiting HMGB1/Nf-κB pathway. Front Pharmacol. 2020;11:1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge assistance provided by KayLee Scott Strahan, Assistant Professor/Research & Learning Services Librarian at The University of Tennessee Health Science Center, Health Sciences Library.

Funding

This work was supported by a UTHSC Collaborative Research Network Award to AS.

Author information

Authors and Affiliations

Authors

Contributions

PD and AS participated in the data collection and quality control. PD, AS, and TI drafted the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Ansley Grimes Stanfill.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devlin, P., Ishrat, T. & Stanfill, A.G. A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans. Transl. Stroke Res. 13, 881–897 (2022). https://doi.org/10.1007/s12975-022-01001-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01001-y

Keywords

Navigation