Skip to main content

Advertisement

Log in

Complement C3a Receptor (C3aR) Mediates Vascular Dysfunction, Hippocampal Pathology, and Cognitive Impairment in a Mouse Model of VCID

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Vascular contributions to cognitive impairment and dementia (VCID) secondary to chronic mild-moderate cerebral ischemia underlie a significant percentage of cases of dementia. We previously reported that either genetic deficiency of the complement C3a receptor (C3aR) or its pharmacological inhibition protects against cerebral ischemia in rodents, while others have implicated C3aR in the pathogenesis seen in rodent transgenic models of Alzheimer’s disease. In the present study, we evaluated the role of complement C3a-C3aR signaling in the onset and progression of VCID. We utilized the bilateral common carotid artery stenosis (BCAS) model to induce VCID in male C57BL/6 wild-type and C3aR-knockout (C3aR−/−) mice. Cerebral blood flow (CBF) changes, hippocampal atrophy (HA), white matter degeneration (WMD), and ventricular size were assessed at 4 months post-BCAS using laser speckle contrast analysis (LSCI) and magnetic resonance imaging (MRI). Cognitive function was evaluated using the Morris water maze (MWM), and novel object recognition (NOR), immunostaining, and western blot were performed to assess the effect of genetic C3aR deletion on post-VCID outcomes. BCAS resulted in decreased CBF and increased HA, WMD, and neurovascular inflammation in WT (C57BL/6) compared to C3aR−/− (C3aR-KO) mice. Moreover, C3aR−/− mice exhibited improved cognitive function on NOR and MWM relative to WT controls. We conclude that over-activation of the C3a/C3aR axis exacerbates neurovascular inflammation leading to poor VCID outcomes which are mitigated by C3aR deletion. Future studies are warranted to dissect the role of cell-specific C3aR in VCID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Corriveau RA, Bosetti F, Emr M, Gladman JT, Koenig JI, Moy CS, et al. The science of vascular contributions to cognitive impairment and dementia (VCID): a framework for advancing research priorities in the cerebrovascular biology of cognitive decline. Cell Mol Neurobiol. 2016;36(2):281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khan MB, Hafez S, Hoda MN, Baban B, Wagner J, Awad ME, et al. Chronic remote ischemic conditioning is cerebroprotective and induces vascular remodeling in a VCID model. Transl Stroke Res. 2018;9(1):51–63.

    Article  CAS  PubMed  Google Scholar 

  3. Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, et al. Vascular cognitive impairment and dementia: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;73(25):3326–44.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(9):2672–713.

    Article  PubMed  PubMed Central  Google Scholar 

  5. O’Brien JT, Thomas A. Vascular dementia. Lancet. 2015;386(10004):1698–706.

    Article  PubMed  Google Scholar 

  6. Matsui Y, Tanizaki Y, Arima H, Yonemoto K, Doi Y, Ninomiya T, et al. Incidence and survival of dementia in a general population of Japanese elderly: the Hisayama study. J Neurol Neurosurg Psychiatry. 2009;80(4):366–70.

    Article  CAS  PubMed  Google Scholar 

  7. Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement. 2015;11(6):710–7.

    Article  PubMed  Google Scholar 

  8. Nishio K, Ihara M, Yamasaki N, Kalaria RN, Maki T, Fujita Y, et al. A mouse model characterizing features of vascular dementia with hippocampal atrophy. Stroke. 2010;41(6):1278–84.

    Article  PubMed  Google Scholar 

  9. Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R, et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke. 2007;38(10):2826–32.

    Article  PubMed  Google Scholar 

  10. Shibata M, Ohtani R, Ihara M, Tomimoto H. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke. 2004;35(11):2598–603.

    Article  PubMed  Google Scholar 

  11. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80(4):844–66.

    Article  CAS  PubMed  Google Scholar 

  12. de la Torre JC, Aliev G. Inhibition of vascular nitric oxide after rat chronic brain hypoperfusion: spatial memory and immunocytochemical changes. J Cereb Blood Flow Metab. 2005;25(6):663–72.

    Article  PubMed  CAS  Google Scholar 

  13. Liu Q, He S, Groysman L, Shaked D, Russin J, Scotton TC, et al. White matter injury due to experimental chronic cerebral hypoperfusion is associated with C5 deposition. PLoS One. 2013;8(12):e84802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kitaguchi H, Tomimoto H, Ihara M, Shibata M, Uemura K, Kalaria RN, et al. Chronic cerebral hypoperfusion accelerates amyloid beta deposition in APPSwInd transgenic mice. Brain Res. 2009;1294:202–10.

    Article  CAS  PubMed  Google Scholar 

  15. O’Sullivan M, Lythgoe DJ, Pereira AC, Summers PE, Jarosz JM, Williams SC, et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology. 2002;59(3):321–6.

    Article  CAS  PubMed  Google Scholar 

  16. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5(5):347–60.

    Article  CAS  PubMed  Google Scholar 

  17. Promjunyakul N, Lahna D, Kaye JA, Dodge HH, Erten-Lyons D, Rooney WD, et al. Characterizing the white matter hyperintensity penumbra with cerebral blood flow measures. Neuroimage Clin. 2015;8:224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Promjunyakul NO, Lahna DL, Kaye JA, Dodge HH, Erten-Lyons D, Rooney WD, et al. Comparison of cerebral blood flow and structural penumbras in relation to white matter hyperintensities: a multi-modal magnetic resonance imaging study. J Cereb Blood Flow Metab. 2016;36(9):1528–36.

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Vries HE, Kooij G, Frenkel D, Georgopoulos S, Monsonego A, Janigro D. Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia. 2012;53(Suppl 6):45–52.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of cerebrovascular endothelial cells: prelude to vascular dementia. Front Aging Neurosci. 2018;10:376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manukjan N, Ahmed Z, Fulton D, Blankesteijn WM, Foulquier S. A systematic review of WNT signaling in endothelial cell oligodendrocyte interactions: potential relevance to cerebral small vessel disease. Cells. 2020;9(6):1545.

  22. Alafuzoff I, Adolfsson R, Grundke-Iqbal I, Winblad B. Blood-brain barrier in Alzheimer dementia and in non-demented elderly. An immunocytochemical study. Acta Neuropathol. 1987;73(2):160–6.

    Article  CAS  PubMed  Google Scholar 

  23. Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease–systematic review and meta-analysis. Neurobiol Aging. 2009;30(3):337–52.

    Article  CAS  PubMed  Google Scholar 

  24. Schreiber S, Bueche CZ, Garz C, Braun H. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? - New insights from a rat model. Exp Transl Stroke Med. 2013;5(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Skoog I, Wallin A, Fredman P, Hesse C, Aevarsson O, Karlsson I, et al. A population study on blood-brain barrier function in 85-year-olds: relation to Alzheimer’s disease and vascular dementia. Neurology. 1998;50(4):966–71.

    Article  CAS  PubMed  Google Scholar 

  26. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.

    Article  CAS  PubMed  Google Scholar 

  27. Sewell DL, Nacewicz B, Liu F, Macvilay S, Erdei A, Lambris JD, et al. Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J Neuroimmunol. 2004;155(1–2):55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mocco J, Mack WJ, Ducruet AF, Sosunov SA, Sughrue ME, Hassid BG, et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res. 2006;99(2):209–17.

    Article  CAS  PubMed  Google Scholar 

  29. Engstrom G, Hedblad B, Janzon L, Lindgarde F. Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke: a population-based cohort study. Eur J Cardiovasc Prev Rehabil. 2007;14(3):392–7.

    Article  PubMed  Google Scholar 

  30. Cojocaru IM, Cojocaru M, Tanasescu R, Burcin C, Atanasiu AN, Petrescu AM, et al. Changes in plasma levels of complement in patients with acute ischemic stroke. Rom J Intern Med. 2008;46(1):77–80.

    CAS  PubMed  Google Scholar 

  31. Ducruet AF, Hassid BG, Mack WJ, Sosunov SA, Otten ML, Fusco DJ, et al. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. J Cereb Blood Flow Metab. 2008;28(5):1048–58.

    Article  CAS  PubMed  Google Scholar 

  32. Rynkowski MA, Kim GH, Garrett MC, Zacharia BE, Otten ML, Sosunov SA, et al. C3a receptor antagonist attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2009;29(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  33. Ducruet AF, Zacharia BE, Sosunov SA, Gigante PR, Yeh ML, Gorski JW, et al. Complement inhibition promotes endogenous neurogenesis and sustained anti-inflammatory neuroprotection following reperfused stroke. PLoS One. 2012;7(6):e38664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stokowska A, Olsson S, Holmegaard L, Jood K, Blomstrand C, Jern C, et al. Cardioembolic and small vessel disease stroke show differences in associations between systemic C3 levels and outcome. PLoS One. 2013;8(8):e72133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang LY, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics. 2020;10(1):74–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhang B, Yang N, Gao C. Is plasma C3 and C4 levels useful in young cerebral ischemic stroke patients? Associations with prognosis at 3 months. J Thromb Thrombolysis. 2015;39(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  37. Propson NE, Roy ER, Litvinchuk A, Köhl J, Zheng H. Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J Clin Invest. 2021;131(1): e140966.

  38. Litvinchuk A, Wan YW, Swartzlander DB, Chen F, Cole A, Propson NE, et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron. 2018;100(6):1337-53.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ihara M, Tomimoto H. Lessons from a mouse model characterizing features of vascular cognitive impairment with white matter changes. J Aging Res. 2011;2011:978761.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ahmad S, Kindelin A, Khan SA, Ahmed M, Hoda MN, Bhatia K, et al. C3a receptor inhibition protects brain endothelial cells against oxygen-glucose deprivation/reperfusion. Exp Neurobiol. 2019;28(2):216–28.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ahmad S, Pandya C, Kindelin A, Bhatia K, Chaudhary R, Dwivedi AK, et al. C3a receptor antagonist therapy is protective with or without thrombolysis in murine thromboembolic stroke. Br J Pharmacol. 2020;177(11):2466–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bhatia K, Ahmad S, Kindelin A, Ducruet AF. Complement C3a receptor-mediated vascular dysfunction: a complex interplay between aging and neurodegeneration. J Clin Invest. 2021;131(1): e144348.

  43. Coulthard LG, Woodruff TM. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol. 2015;194(8):3542–8.

    Article  CAS  PubMed  Google Scholar 

  44. Stokowska A, Atkins AL, Morán J, Pekny T, Bulmer L, Pascoe MC, et al. Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia. Brain. 2017;140(2):353–69.

    Article  PubMed  Google Scholar 

  45. De Vis JB, Hendrikse J, Bhogal A, Adams A, Kappelle LJ, Petersen ET. Age-related changes in brain hemodynamics; a calibrated MRI study. Hum Brain Mapp. 2015;36(10):3973–87.

    Article  PubMed  PubMed Central  Google Scholar 

  46. del Ser T, Bermejo F, Portera A, Arredondo JM, Bouras C, Constantinidis J. Vascular dementia. A clinicopathological study. J Neurol Sci. 1990;96(1):1–17.

    Article  PubMed  Google Scholar 

  47. Scheel P, Puls I, Becker G, Schoning M. Volume reduction in cerebral blood flow in patients with vascular dementia. Lancet. 1999;354(9196):2137.

    Article  CAS  PubMed  Google Scholar 

  48. Schuff N, Matsumoto S, Kmiecik J, Studholme C, Du A, Ezekiel F, et al. Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimers Dement. 2009;5(6):454–62.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Khan MB, Hoda MN, Vaibhav K, Giri S, Wang P, Waller JL, et al. Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl Stroke Res. 2015;6(1):69–77.

    Article  PubMed  Google Scholar 

  50. Hess DC, Khan MB, Hoda N, Morgan JC. Remote ischemic conditioning: a treatment for vascular cognitive impairment. Brain Circ. 2015;1(2):133–9.

    Article  PubMed  Google Scholar 

  51. Dalby RB, Eskildsen SF, Videbech P, Frandsen J, Mouridsen K, Sorensen L, et al. Oxygenation differs among white matter hyperintensities, intersected fiber tracts and unaffected white matter. Brain Commun. 2019;1(1):fcz033.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Apostolova LG, Dutton RA, Dinov ID, Hayashi KM, Toga AW, Cummings JL, et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol. 2006;63(5):693–9.

    Article  PubMed  Google Scholar 

  53. Apostolova LG, Mosconi L, Thompson PM, Green AE, Hwang KS, Ramirez A, et al. Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol Aging. 2010;31(7):1077–88.

    Article  PubMed  Google Scholar 

  54. Carmichael OT, Kuller LH, Lopez OL, Thompson PM, Dutton RA, Lu A, et al. Cerebral ventricular changes associated with transitions between normal cognitive function, mild cognitive impairment, and dementia. Alzheimer Dis Assoc Disord. 2007;21(1):14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yousef H, Czupalla CJ, Lee D, Chen MB, Burke AN, Zera KA, et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat Med. 2019;25(6):988–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R, Leeman DS, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571(7764):205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature. 2020;577(7790):399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee JD, Taylor SM, Woodruff TM. Is the C3a receptor antagonist SB290157 a useful pharmacological tool? Br J Pharmacol. 2020;177(24):5677–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Barrow Neurological Foundation and the Arizona Alzheimer’s Research Consortium to AFD. The Arizona Alzheimer’s Consortium (AAC) is greatly acknowledged to support this work. The authors would like to thank the staff of the Neuroscience Publications at Barrow Neurological Institute for providing the schematic figure.

Author information

Authors and Affiliations

Authors

Contributions

KB, AK, MN, JY, KM, MBK, KM and SA performed experiments, analyzed data, and drafted the manuscript; AF and GHT performed MRI imaging and analyzed data; SA, ASA, MCP, EJF, and MFW reviewed and edited the manuscript; AFD designed and oversaw the project, assisted in analyzing and interpreting the data, and edited the manuscript.

Corresponding authors

Correspondence to Saif Ahmad or Andrew F. Ducruet.

Ethics declarations

Ethics Approval and Consent to Participate

All applicable institutional and national guidelines for the care and use of animals were followed.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12975_2022_993_MOESM1_ESM.pptx

Supplementary file1 (PPTX 3700 KB) Supplemental Figure 1. Representative images showing baseline cortical CBF before surgery. We monitored CBF in each group including Sham (WT), Sham (KO), BCAS (WT) and BCAS (KO) mice. There was no statistical significance noted between group comparisons. Supplemental Figure 2. Representative Luxol fast blue (LFB) staining for white matter degeneration. The intensity of LFB staining was significantly decreased in BCAS (WT) compared with Sham (WT). However, BACS (KO) group showed significant improvement vs BCAS (WT). A, Representative images (20x) were taken from cross sections of corpus callosum of each group of mice with LFB staining and its higher magnification (40x, scale bar=20μm) at 4 months after BCAS surgery. B, Histogram representing grading score of white matter degeneration in BCAS-WT and improvement in BCAS-KO mice. Data are expressed as Mean ± SD. Data was analyzed using one-Way ANOVA with Tukey’s post-hoc, n=5 (*** p < 0.001 vs Sham, *p= 0.05 vs BCAS-KO). Supplemental Figure 3. Immunoblotting gel images. A-F, Uncropped western blot images (MBP, VCAM1, Iba1, ZO1, pSTAT3 and Occludin) are presented with maker band denoted. Supplemental Figure 4. A, mouse brain (hippocampal region) was stained with only secondary antibody conjugated with FITC-488 for negative control immunofluorescence. B, mouse brain (hippocampal region) was stained with FITC-488 and primary C3aR antibody.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, K., Kindelin, A., Nadeem, M. et al. Complement C3a Receptor (C3aR) Mediates Vascular Dysfunction, Hippocampal Pathology, and Cognitive Impairment in a Mouse Model of VCID. Transl. Stroke Res. 13, 816–829 (2022). https://doi.org/10.1007/s12975-022-00993-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-00993-x

Keywords

Navigation