Skip to main content

Advertisement

Log in

Four Decades of Ischemic Penumbra and Its Implication for Ischemic Stroke

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The ischemic penumbra defined four decades ago has been the main battleground of ischemic stroke. The evolving ischemic penumbra concept has been providing insight for the development of vascular and cellular approaches as well as diagnostic tools for the treatment of ischemic stroke. rt-PA thrombolytic therapy to prevent the transition of ischemic penumbra to core has been approved for acute ischemic stroke within 3 h and was later recommended to extend to 4.5 h after symptom onset. Mechanical thrombectomy was introduced for the treatment of acute ischemic stroke with a therapeutic window of up to 24 h after stroke onset. Multiple modalities brain imaging techniques have been developed that provide guidance to define ischemic penumbra for reperfusion therapy in clinical practice. Cellular and molecular dissection of ischemic penumbra has been providing targets for the development of neuroprotective therapy for ischemic stroke. However, the dynamic nature of ischemic penumbra implicates that infarct core eventually expands into penumbra over time without reperfusion, dictating relative short therapeutic windows and limiting the impact of current reperfusion intervention. Entering the 5th decade since the introduction, ischemic penumbra remains the main focus of ischemic stroke research and clinical practice. In this review, we summarized the evolving ischemic penumbra concept and its implication in the development of vascular and cellular interventions as well as diagnostic tools for acute ischemic stroke. In addition, we discussed future perspectives on expansion of the campaign beyond ischemic penumbra to develop treatment for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977;8(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  2. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke. 1981;12(6):723–5.

    Article  CAS  PubMed  Google Scholar 

  3. Symon L. The relationship between CBF, evoked potentials and the clinical features in cerebral ischaemia. Acta Neurol Scand Suppl. 1980;78:175–90.

    CAS  PubMed  Google Scholar 

  4. Ramos-Cabrer P, Campos F, Sobrino T, Castillo J. Targeting the ischemic penumbra. Stroke. 2011;42(1 Suppl):S7-11. https://doi.org/10.1161/STROKEAHA.110.596684.

    Article  PubMed  Google Scholar 

  5. Heiss WD, Rosner G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol. 1983;14(3):294–301. https://doi.org/10.1002/ana.410140307.

    Article  CAS  PubMed  Google Scholar 

  6. Astrup T, Permin PM. Fibrinolysis in the animal organism. Nature. 1947;159(4046):681.

    Article  CAS  PubMed  Google Scholar 

  7. Collen D, Billiau A, Edy J, De Somer P. Identification of the human plasma protein which inhibits fibrinolysis associated with malignant cells. Biochim Biophys Acta. 1977;499(2):194–201.

    Article  CAS  PubMed  Google Scholar 

  8. Collen D, Rijken DC, Van Damme J, Billiau A. Purification of human tissue-type plasminogen activator in centigram quantities from human melanoma cell culture fluid and its conditioning for use in vivo. Thromb Haemost. 1982;48(3):294–6.

    Article  CAS  PubMed  Google Scholar 

  9. Collen D, Lijnen HR. The tissue-type plasminogen activator story. Arterioscler Thromb Vasc Biol. 2009;29(8):1151–5. https://doi.org/10.1161/ATVBAHA.108.179655.

    Article  CAS  PubMed  Google Scholar 

  10. Bergmann SR, Fox KA, Ter-Pogossian MM, Sobel BE, Collen D. Clot-selective coronary thrombolysis with tissue-type plasminogen activator. Science. 1983;220(4602):1181–3.

    Article  CAS  PubMed  Google Scholar 

  11. Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA et al. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature. 1983;301(5897):214–21.

  12. Van de Werf F, Ludbrook PA, Bergmann SR, Tiefenbrunn AJ, Fox KA, de Geest H, et al. Coronary thrombolysis with tissue-type plasminogen activator in patients with evolving myocardial infarction. N Engl J Med. 1984;310(10):609–13. https://doi.org/10.1056/NEJM198403083101001.

    Article  PubMed  Google Scholar 

  13. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Rev Esp Cardiol (Engl Ed). 2017;70(12):1082. https://doi.org/10.1016/j.rec.2017.11.010.

    Article  Google Scholar 

  14. Terashi A, Kobayashi Y, Katayama Y, Inamura K, Kazama M, Abe T. Clinical effects and basic studies of thrombolytic therapy on cerebral thrombosis. Semin Thromb Hemost. 1990;16(3):236–41. https://doi.org/10.1055/s-2007-1002675.

    Article  CAS  PubMed  Google Scholar 

  15. Levine SR, Brott TG. Thrombolytic therapy in cerebrovascular disorders. Prog Cardiovasc Dis. 1992;34(4):235–62.

    Article  CAS  PubMed  Google Scholar 

  16. National Institute of Neurological D, Stroke rt PASSG. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–7. https://doi.org/10.1056/NEJM199512143332401.

  17. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274(13):1017–25.

  18. Molina CA, Saver JL. Extending reperfusion therapy for acute ischemic stroke: emerging pharmacological, mechanical, and imaging strategies. Stroke. 2005;36(10):2311–20. https://doi.org/10.1161/01.STR.0000182100.65262.46.

    Article  PubMed  Google Scholar 

  19. Cheng NT, Kim AS. Intravenous thrombolysis for acute ischemic stroke within 3 hours versus between 3 and 4.5 hours of symptom onset. Neurohospitalist. 2015;5(3):101–9. https://doi.org/10.1177/1941874415583116.

  20. Campbell BC, Meretoja A, Donnan GA, Davis SM. Twenty-year history of the evolution of stroke thrombolysis with intravenous alteplase to reduce long-term disability. Stroke. 2015;46(8):2341–6. https://doi.org/10.1161/STROKEAHA.114.007564.

    Article  PubMed  Google Scholar 

  21. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29. https://doi.org/10.1056/NEJMoa0804656.

  22. Wahlgren N, Ahmed N, Davalos A, Hacke W, Millan M, Muir K et al. Thrombolysis with alteplase 3–4.5 h after acute ischaemic stroke (SITS-ISTR): an observational study. Lancet. 2008;372(9646):1303–9. https://doi.org/10.1016/S0140-6736(08)61339-2.

  23. Del Zoppo GJ, Saver JL, Jauch EC, Adams HP, Jr., American Heart Association Stroke C. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke. 2009;40(8):2945–8. https://doi.org/10.1161/STROKEAHA.109.192535.

  24. de Los Rios la Rosa F, Khoury J, Kissela BM, Flaherty ML, Alwell K, Moomaw CJ et al. Eligibility for intravenous recombinant tissue-type plasminogen activator within a population: the Effect of the European Cooperative Acute Stroke Study (ECASS) III trial. Stroke. 2012;43(6):1591–5. https://doi.org/10.1161/STROKEAHA.111.645986.

  25. Kate M, Wannamaker R, Kamble H, Riaz P, Gioia LC, Buck B, et al. Penumbral imaging-based thrombolysis with tenecteplase is feasible up to 24 hours after symptom onset. J Stroke. 2018;20(1):122–30. https://doi.org/10.5853/jos.2017.00178.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shang X, Lin M, Zhang S, Li S, Guo Y, Wang W, et al. Clinical outcomes of endovascular treatment within 24 hours in patients with mild ischemic stroke and perfusion imaging selection. AJNR Am J Neuroradiol. 2018;39(6):1083–7. https://doi.org/10.3174/ajnr.A5644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ribo M, Alvarez-Sabin J, Montaner J, Romero F, Delgado P, Rubiera M, et al. Temporal profile of recanalization after intravenous tissue plasminogen activator: selecting patients for rescue reperfusion techniques. Stroke. 2006;37(4):1000–4. https://doi.org/10.1161/01.STR.0000206443.96112.d9.

    Article  CAS  PubMed  Google Scholar 

  28. Saqqur M, Uchino K, Demchuk AM, Molina CA, Garami Z, Calleja S, et al. Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke. Stroke. 2007;38(3):948–54. https://doi.org/10.1161/01.STR.0000257304.21967.ba.

    Article  PubMed  Google Scholar 

  29. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30. https://doi.org/10.1056/NEJMoa1414905.

    Article  CAS  PubMed  Google Scholar 

  30. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18. https://doi.org/10.1056/NEJMoa1414792.

    Article  CAS  PubMed  Google Scholar 

  31. Hameed A, Zafar H, Mylotte D, Sharif F. Recent trends in clot retrieval devices: a review. Cardiol Ther. 2017;6(2):193–202. https://doi.org/10.1007/s40119-017-0098-2.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marks MP, Heit JJ, Lansberg MG, Kemp S, Christensen S, Derdeyn CP, et al. Endovascular treatment in the DEFUSE 3 study. Stroke. 2018;49(8):2000–3. https://doi.org/10.1161/STROKEAHA.118.022147.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Desai SM, Haussen DC, Aghaebrahim A, Al-Bayati AR, Santos R, Nogueira RG, et al. Thrombectomy 24 hours after stroke: beyond DAWN. J Neurointerv Surg. 2018;10(11):1039–42. https://doi.org/10.1136/neurintsurg-2018-013923.

    Article  PubMed  Google Scholar 

  34. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21. https://doi.org/10.1056/NEJMoa1706442.

    Article  PubMed  Google Scholar 

  35. Rao VL, Mlynash M, Christensen S, Yennu A, Kemp S, Zaharchuk G, et al. Collateral status contributes to differences between observed and predicted 24-h infarct volumes in DEFUSE 3. J Cereb Blood Flow Metab. 2020;40(10):1966–74. https://doi.org/10.1177/0271678X20918816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang SH, Lou M, Luo B, Jiang WJ, Liu R. Precision medicine for ischemic stroke, let us move beyond time is brain. Transl Stroke Res. 2018;9(2):93–5. https://doi.org/10.1007/s12975-017-0566-y.

    Article  PubMed  Google Scholar 

  37. Wouters A, Lemmens R, Dupont P, Thijs V. Wake-up stroke and stroke of unknown onset: a critical review. Front Neurol. 2014;5:153. https://doi.org/10.3389/fneur.2014.00153.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marcoux FW, Morawetz RB, Crowell RM, DeGirolami U, Halsey JH Jr. Differential regional vulnerability in transient focal cerebral ischemia. Stroke. 1982;13(3):339–46.

    Article  CAS  PubMed  Google Scholar 

  39. Baltan S, Besancon EF, Mbow B, Ye Z, Hamner MA, Ransom BR. White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J Neurosci. 2008;28(6):1479–89. https://doi.org/10.1523/JNEUROSCI.5137-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature. 1999;399(6738 Suppl):A7-14.

    Article  CAS  PubMed  Google Scholar 

  41. Frerichs KU, Kennedy C, Sokoloff L, Hallenbeck JM. Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia.” J Cereb Blood Flow Metab. 1994;14(2):193–205. https://doi.org/10.1038/jcbfm.1994.26.

    Article  CAS  PubMed  Google Scholar 

  42. Hoyte L, Barber PA, Buchan AM, Hill MD. The rise and fall of NMDA antagonists for ischemic stroke. Curr Mol Med. 2004;4(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  43. Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500. https://doi.org/10.1038/nm1735.

    Article  CAS  PubMed  Google Scholar 

  44. Grupke S, Hall J, Dobbs M, Bix GJ, Fraser JF. Understanding history, and not repeating it. Neuroprotection for acute ischemic stroke: from review to preview. Clin Neurol Neurosurg. 2015;129:1–9. https://doi.org/10.1016/j.clineuro.2014.11.013.

  45. Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit. Stroke. 2004;35(2):354–6. https://doi.org/10.1161/01.STR.0000115164.80010.8A.

    Article  PubMed  Google Scholar 

  46. del Zoppo GJ. Stroke and neurovascular protection. N Engl J Med. 2006;354(6):553–5. https://doi.org/10.1056/NEJMp058312.

    Article  PubMed  Google Scholar 

  47. Strecker JK, Schmidt A, Schabitz WR, Minnerup J. Neutrophil granulocytes in cerebral ischemia - evolution from killers to key players. Neurochem Int. 2017;107:117–26. https://doi.org/10.1016/j.neuint.2016.11.006.

    Article  CAS  PubMed  Google Scholar 

  48. Selvaraj UM, Stowe AM. Long-term T cell responses in the brain after an ischemic stroke. Discov Med. 2017;24(134):323–33.

    PubMed  PubMed Central  Google Scholar 

  49. Schabitz WR, Minnerup J. Neutrophils in acute stroke pathophysiology. Stroke. 2019;50(3):e44–5. https://doi.org/10.1161/STROKEAHA.118.024300.

    Article  PubMed  Google Scholar 

  50. Xie L, Li W, Hersh J, Liu R, Yang SH. Experimental ischemic stroke induces long-term T cell activation in the brain. J Cereb Blood Flow Metab. 2019;39(11):2268–76. https://doi.org/10.1177/0271678X18792372.

    Article  CAS  PubMed  Google Scholar 

  51. Del Zoppo GJ. Toward the neurovascular unit. A journey in clinical translation: 2012 Thomas Willis Lecture. Stroke. 2013;44(1):263–9. https://doi.org/10.1161/STROKEAHA.112.653618.

  52. Minnerup J, Schabitz WR. Multifunctional actions of approved and candidate stroke drugs. Neurotherapeutics. 2009;6(1):43–52. https://doi.org/10.1016/j.nurt.2008.10.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steliga A, Kowianski P, Czuba E, Waskow M, Morys J, Lietzau G. Neurovascular unit as a source of ischemic stroke biomarkers-limitations of experimental studies and perspectives for clinical application. Transl Stroke Res. 2020;11(4):553–79. https://doi.org/10.1007/s12975-019-00744-5.

    Article  PubMed  Google Scholar 

  54. Liu S, Levine SR, Winn HR. Targeting ischemic penumbra: part I - from pathophysiology to therapeutic strategy. J Exp Stroke Transl Med. 2010;3(1):47–55.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu S, Levine SR, Winn HR. Targeting ischemic penumbra Part II: selective drug delivery using liposome technologies. J Exp Stroke Transl Med. 2011;4(1):16–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. del Zoppo GJ, Sharp FR, Heiss WD, Albers GW. Heterogeneity in the penumbra. J Cereb Blood Flow Metab. 2011;31(9):1836–51. https://doi.org/10.1038/jcbfm.2011.93.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Arvidsson A, Kokaia Z, Lindvall O. N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur J Neurosci. 2001;14(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  58. Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A. 2006;103(35):13198–202. https://doi.org/10.1073/pnas.0603512103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu R, Yuan H, Yuan F, Yang SH. Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol Res. 2012;34(4):331–7. https://doi.org/10.1179/1743132812Y.0000000020.

    Article  CAS  PubMed  Google Scholar 

  60. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739–47. https://doi.org/10.1634/stemcells.2005-0281.

    Article  CAS  PubMed  Google Scholar 

  61. Davis S, Donnan GA. Time is Penumbra: imaging, selection and outcome. The Johann jacob wepfer award 2014. Cerebrovasc Dis. 2014;38(1):59–72. https://doi.org/10.1159/000365503.

  62. Heiss WD. Best measure of ischemic penumbra: positron emission tomography. Stroke. 2003;34(10):2534–5. https://doi.org/10.1161/01.STR.0000092396.70827.28.

    Article  PubMed  Google Scholar 

  63. Warach S. Measurement of the ischemic penumbra with MRI: it’s about time. Stroke. 2003;34(10):2533–4. https://doi.org/10.1161/01.STR.0000092395.19554.9A.

    Article  PubMed  Google Scholar 

  64. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7. https://doi.org/10.1148/radiology.161.2.3763909.

    Article  PubMed  Google Scholar 

  65. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14(2):330–46.

    Article  CAS  PubMed  Google Scholar 

  66. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176(2):439–45. https://doi.org/10.1148/radiology.176.2.2367658.

    Article  CAS  PubMed  Google Scholar 

  67. Yuh WT, Alexander MD, Ueda T, Maeda M, Taoka T, Yamada K, et al. Revisiting current golden rules in managing acute ischemic stroke: evaluation of new strategies to further improve treatment selection and outcome. AJR Am J Roentgenol. 2017;208(1):32–41. https://doi.org/10.2214/AJR.16.16557.

    Article  PubMed  Google Scholar 

  68. Minematsu K, Li L, Sotak CH, Davis MA, Fisher M. Reversible focal ischemic injury demonstrated by diffusion-weighted magnetic resonance imaging in rats. Stroke. 1992;23(9):1304–10; discussion 10–1.

  69. Wouters A, Dupont P, Norrving B, Laage R, Thomalla G, Albers GW, et al. Prediction of stroke onset is improved by relative fluid-attenuated inversion recovery and perfusion imaging compared to the visual diffusion-weighted imaging/fluid-attenuated inversion recovery mismatch. Stroke. 2016;47(10):2559–64. https://doi.org/10.1161/STROKEAHA.116.013903.

    Article  PubMed  Google Scholar 

  70. Wouters A, Dupont P, Christensen S, Norrving B, Laage R, Thomalla G, et al. Association between time from stroke onset and fluid-attenuated inversion recovery lesion intensity is modified by status of collateral circulation. Stroke. 2016;47(4):1018–22. https://doi.org/10.1161/STROKEAHA.115.012010.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, Wu O et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10(11):978–86. https://doi.org/10.1016/S1474-4422(11)70192-2.

  72. Klug J, Dirren E, Preti MG, Machi P, Kleinschmidt A, Vargas MI, et al. Integrating regional perfusion CT information to improve prediction of infarction after stroke. J Cereb Blood Flow Metab. 2021;41(3):502–10. https://doi.org/10.1177/0271678X20924549.

    Article  CAS  PubMed  Google Scholar 

  73. Heit JJ, Wintermark M. Perfusion computed tomography for the evaluation of acute ischemic stroke: strengths and pitfalls. Stroke. 2016;47(4):1153–8. https://doi.org/10.1161/STROKEAHA.116.011873.

    Article  PubMed  Google Scholar 

  74. Kent DM, Hill MD, Ruthazer R, Coutts SB, Demchuk AM, Dzialowski I, et al. “Clinical-CT mismatch” and the response to systemic thrombolytic therapy in acute ischemic stroke. Stroke. 2005;36(8):1695–9. https://doi.org/10.1161/01.STR.0000173397.31469.4b.

    Article  CAS  PubMed  Google Scholar 

  75. Prosser J, Butcher K, Allport L, Parsons M, MacGregor L, Desmond P, et al. Clinical-diffusion mismatch predicts the putative penumbra with high specificity. Stroke. 2005;36(8):1700–4. https://doi.org/10.1161/01.STR.0000173407.40773.17.

    Article  PubMed  Google Scholar 

  76. Nagakane Y, Christensen S, Ogata T, Churilov L, Ma H, Parsons MW, et al. Moving beyond a single perfusion threshold to define penumbra: a novel probabilistic mismatch definition. Stroke. 2012;43(6):1548–55. https://doi.org/10.1161/STROKEAHA.111.643932.

    Article  PubMed  Google Scholar 

  77. Sobesky J. Refining the mismatch concept in acute stroke: lessons learned from PET and MRI. J Cereb Blood Flow Metab. 2012;32(7):1416–25. https://doi.org/10.1038/jcbfm.2012.54.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kamalian S, Kamalian S, Konstas AA, Maas MB, Payabvash S, Pomerantz SR, et al. CT perfusion mean transit time maps optimally distinguish benign oligemia from true “at-risk” ischemic penumbra, but thresholds vary by postprocessing technique. AJNR Am J Neuroradiol. 2012;33(3):545–9. https://doi.org/10.3174/ajnr.A2809.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Baron JC. Pathophysiology of acute cerebral ischemia: PET studies in humans. Cerebrovasc Dis. 1991;1991(1 (Suppl 1)):22–31. https://doi.org/10.1159/000108877.

  80. Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke. 2006;37(5):1334–9. https://doi.org/10.1161/01.STR.0000217418.29609.22.

    Article  PubMed  Google Scholar 

  81. Goyal M, Menon BK, Derdeyn CP. Perfusion imaging in acute ischemic stroke: let us improve the science before changing clinical practice. Radiology. 2013;266(1):16–21. https://doi.org/10.1148/radiol.12112134.

    Article  PubMed  Google Scholar 

  82. Bang OY, Lee KH, Kim SJ, Liebeskind DS. Benign oligemia despite a malignant MRI profile in acute ischemic stroke. J Clin Neurol. 2010;6(1):41–5. https://doi.org/10.3988/jcn.2010.6.1.41.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC. Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab. 2007;27(6):1129–36. https://doi.org/10.1038/sj.jcbfm.9600424.

    Article  PubMed  Google Scholar 

  84. Guo Y, Zhou IY, Chan ST, Wang Y, Mandeville ET, Igarashi T, et al. pH-sensitive MRI demarcates graded tissue acidification during acute stroke - pH specificity enhancement with magnetization transfer and relaxation-normalized amide proton transfer (APT) MRI. Neuroimage. 2016;141:242–9. https://doi.org/10.1016/j.neuroimage.2016.07.025.

    Article  CAS  PubMed  Google Scholar 

  85. Cheung J, Doerr M, Hu R, Sun PZ. Refined ischemic penumbra imaging with tissue pH and diffusion kurtosis magnetic resonance imaging. Transl Stroke Res. 2020. https://doi.org/10.1007/s12975-020-00868-z.

    Article  PubMed  Google Scholar 

  86. Neubauer RA. Idling neurons. Lancet. 1990;335(8699):1217. https://doi.org/10.1016/0140-6736(90)92736-2.

    Article  CAS  PubMed  Google Scholar 

  87. Macleod MA, Francis TJ, Smith DJ. Enhancing “idling” neurons. Lancet. 1990;335(8693):860–1. https://doi.org/10.1016/0140-6736(90)90979-f.

    Article  CAS  PubMed  Google Scholar 

  88. Motta M, Ramadan A, Hillis AE, Gottesman RF, Leigh R. Diffusion-perfusion mismatch: an opportunity for improvement in cortical function. Front Neurol. 2014;5:280. https://doi.org/10.3389/fneur.2014.00280.

    Article  PubMed  Google Scholar 

  89. Wei L, Ying DJ, Cui L, Langsdorf J, Yu SP. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats. Brain Res. 2004;1022(1–2):54–61. https://doi.org/10.1016/j.brainres.2004.06.080.

    Article  CAS  PubMed  Google Scholar 

  90. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–9. https://doi.org/10.1161/STROKEAHA.108.531632.

    Article  PubMed  Google Scholar 

  91. Jiang MQ, Zhao YY, Cao W, Wei ZZ, Gu X, Wei L, et al. Long-term survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice. Brain Pathol. 2017;27(4):480–98. https://doi.org/10.1111/bpa.12425.

    Article  CAS  PubMed  Google Scholar 

  92. Abumiya T, Lucero J, Heo JH, Tagaya M, Koziol JA, Copeland BR, et al. Activated microvessels express vascular endothelial growth factor and integrin alpha(v)beta3 during focal cerebral ischemia. J Cereb Blood Flow Metab. 1999;19(9):1038–50. https://doi.org/10.1097/00004647-199909000-00012.

    Article  CAS  PubMed  Google Scholar 

  93. Kanazawa M, Takahashi T, Ishikawa M, Onodera O, Shimohata T, Del Zoppo GJ. Angiogenesis in the ischemic core: a potential treatment target? J Cereb Blood Flow Metab. 2019;39(5):753–69. https://doi.org/10.1177/0271678X19834158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kang R, Gamdzyk M, Tang H, Luo Y, Lenahan C, Zhang JH. Delayed Recanalization-How Late Is Not Too Late? Transl Stroke Res. 2020. https://doi.org/10.1007/s12975-020-00877-y.

    Article  PubMed  Google Scholar 

  95. Camara R, Matei N, Zhang JH. Evolution of the stroke paradigm: a review of delayed recanalization. J Cereb Blood Flow Metab. 2021;41(5):945–57. https://doi.org/10.1177/0271678X20978861.

    Article  PubMed  Google Scholar 

  96. Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res. 2020;11(6):1185–202. https://doi.org/10.1007/s12975-020-00806-z.

    Article  PubMed  Google Scholar 

  97. Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: a therapeutic opportunity. J Cereb Blood Flow Metab. 2020;40(1_suppl):S6-S24. https://doi.org/10.1177/0271678X20951995.

  98. Takasawa K, Kitagawa K, Yagita Y, Sasaki T, Tanaka S, Matsushita K, et al. Increased proliferation of neural progenitor cells but reduced survival of newborn cells in the contralateral hippocampus after focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2002;22(3):299–307. https://doi.org/10.1097/00004647-200203000-00007.

    Article  PubMed  Google Scholar 

  99. Macas J, Nern C, Plate KH, Momma S. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci. 2006;26(50):13114–9. https://doi.org/10.1523/JNEUROSCI.4667-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partly funded by the National Institutes of Health grants R01NS088596 (SY) and R01NS109583 (SY).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-Hua Yang or Ran Liu.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Liu, R. Four Decades of Ischemic Penumbra and Its Implication for Ischemic Stroke. Transl. Stroke Res. 12, 937–945 (2021). https://doi.org/10.1007/s12975-021-00916-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00916-2

Keywords

Navigation