Skip to main content

Advertisement

Log in

A Novel Mouse Model for Cerebral Venous Sinus Thrombosis

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Cerebral venous sinus thrombosis (CVST) is an uncommon cause of stroke resulting in parenchymal injuries associated with heterogeneous clinical symptoms and prognosis. Therefore, an experimental animal model is required to further study underlying mechanisms involved in CVST. This study is aimed at developing a novel murine model suitable and relevant for evaluating injury patterns during CVST and studying its clinical aspects. CVST was achieved in C57BL/6J mice by autologous clot injection into the superior sagittal sinus (SSS) combined with bilateral ligation of external jugular veins. Clot was prepared ex vivo using thrombin before injection. On days 1 and 7 after CVST, SSS occlusion and associated-parenchymal lesions were monitored using different modalities: in vivo real-time intravital microscopy, magnetic resonance imaging (MRI), and immuno-histology. In addition, mice were subjected to a neurological sensory-motor evaluation. Thrombin-induced clot provided fibrin- and erythrocyte-rich thrombi that lead to reproducible SSS occlusion at day 1 after CVST induction. On day 7 post-CVST, venous occlusion monitoring (MRI, intravital microscopy) showed that initial injected-thrombus size did not significantly change demonstrating no early spontaneous recanalization. Microscopic histological analysis revealed that SSS occlusion resulted in brain edema, extensive fibrin-rich venular thrombotic occlusion, and ischemic and hemorrhagic lesions. Mice with CVST showed a significant lower neurological score on post-operative days 1 and 7, compared to the sham-operated group. We established a novel clinically CVST-relevant model with a persistent and reproducible SSS occlusion responsible for symptomatic ischemic and hemorrhagic lesions. This method provides a reliable model to study CVST physiopathology and evaluation of therapeutic new regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The corresponding author (Marie-Charlotte Bourrienne) takes full responsibility for the data, the analyses and interpretation, and the conduct of the research of the present study and has full access to all of the data.

References

  1. Silvis SM, de Sousa DA, Ferro JM, Coutinho JM. Cerebral venous thrombosis. Nat Rev Neurol. 2017;13(9):555–65.

    Article  PubMed  Google Scholar 

  2. Gustavo S, Fernando B, Brown RD, et al. Diagnosis and management of cerebral venous thrombosis. Stroke. 2011;42(4):1158–92.

    Article  Google Scholar 

  3. Stolz E, Rahimi A, Gerriets T, Kraus J, Kaps M. Cerebral venous thrombosis: an all or nothing disease?: Prognostic factors and long-term outcome. Clin Neurol Neurosurg. 2005;107(2):99–107.

    Article  PubMed  Google Scholar 

  4. Ferro JM, Canhão P, Stam J, Bousser M-G, Barinagarrementeria F. Prognosis of cerebral vein and dural sinus thrombosis: results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). Stroke. 2004;35(3):664–70.

    Article  PubMed  Google Scholar 

  5. Srivastava AK, Kalita J, Haris M, Gupta RK, Misra UK. Radiological and histological changes following cerebral venous sinus thrombosis in a rat model. Neurosci Res. 2009;65(4):343–6.

    Article  PubMed  Google Scholar 

  6. Nakase H, Heimann A, Kempski O. Local cerebral blood flow in a rat cortical vein occlusion model. J Cereb Blood Flow Metab. 1996;16(4):720–8.

    Article  CAS  PubMed  Google Scholar 

  7. Nagai M, Yilmaz CE, Kirchhofer D, Esmon CT, Mackman N, Granger DN. Role of coagulation factors in cerebral venous sinus and cerebral microvascular thrombosis. Neurosurgery. 2010;66(3):560–6.

    Article  PubMed  Google Scholar 

  8. Li G, Zeng X, Ji T, Fredrickson V, Wang T, Hussain M, et al. A new thrombosis model of the superior sagittal sinus involving cortical veins. World Neurosurg. 2014;82(1):169–74.

    Article  PubMed  Google Scholar 

  9. Kurokawa Y, Hashi K, Okuyama T, Sasaki S. An experimental model of cerebral venous hypertension in the rat. Neurol Med Chir (Tokyo). 1989;29(3):175–80.

    Article  CAS  Google Scholar 

  10. Nakase H, Heimann A, Kempski O. Alterations of regional cerebral blood flow and oxygen saturation in a rat sinus-vein thrombosis model. Stroke. 1996;27(4):720–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wang W, Mu S, Xu W, Liang S, Lin R, Li Z, et al. Establishment of a rat model of superior sagittal-sinus occlusion and recanalization via a thread-embolism method. Neuroscience. 2019;416:41–9.

    Article  CAS  PubMed  Google Scholar 

  12. Yenigün M, Jünemann M, Gerriets T, Stolz E. Sinus thrombosis—do animal models really cover the clinical syndrome? Ann Transl Med. 2015;3(10)

  13. Nagai M, Yilmaz CE, Kirchhofer D, et al. Role of coagulation factors in cerebral venous sinus and cerebral microvascular thrombosis. Neurosurgery. 2010.

  14. Kim D-E, Jaffer FA, Weissleder R, Tung C-H, Schellingerhout D. Near-infrared fluorescent imaging of cerebral thrombi and blood–brain barrier disruption in a mouse model of cerebral venous sinus thrombosis. J Cereb Blood Flow Metab. 2005;25(2):226–33.

    Article  PubMed  Google Scholar 

  15. Rashad S, Niizuma K, Sato-Maeda M, et al. Early BBB breakdown and subacute inflammasome activation and pyroptosis as a result of cerebral venous thrombosis. Brain Res. 2018;1699:54–68.

    Article  CAS  PubMed  Google Scholar 

  16. Ungersböck K, Heimann A, Kempski O. Cerebral blood flow alterations in a rat model of cerebral sinus thrombosis. Stroke. 1993;24(4):563–9.

    Article  PubMed  Google Scholar 

  17. Röther J, Waggie K, van Bruggen N, de Crespigny AJ, Moseley ME. Experimental cerebral venous thrombosis: evaluation using magnetic resonance imaging. J Cereb Blood Flow Metab. 1996;16(6):1353–61.

    Article  PubMed  Google Scholar 

  18. Otsuka H, Ueda K, Heimann A, Kempski O. Effects of cortical spreading depression on cortical blood flow, impedance, DC potential, and infarct size in a rat venous infarct model. Exp Neurol. 2000;162(1):201–14.

    Article  CAS  PubMed  Google Scholar 

  19. Tiwari HS, Misra UK, Kalita J, Mishra A, Shukla S. Oxidative stress and glutamate excitotoxicity contribute to apoptosis in cerebral venous sinus thrombosis. Neurochem Int. 2016;100:91–6.

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Wang Q, Gao Y, Lu Z, Cui X, Zheng T, et al. Photothrombosis combined with thrombin injection establishes a rat model of cerebral venous sinus thrombosis. Neuroscience. 2015;306:39–49.

    Article  CAS  PubMed  Google Scholar 

  21. Wei Y, Deng X, Sheng G, Guo X-B. A rabbit model of cerebral venous sinus thrombosis established by ferric chloride and thrombin injection. Neurosci Lett. 2018;662:205–12.

    Article  CAS  PubMed  Google Scholar 

  22. Ren M, Lin Z-J, Qian H, Choudhury GR, Liu R, Liu H, et al. Embolic middle cerebral artery occlusion model using thrombin and fibrinogen composed clots in rat. J Neurosci Methods. 2012;211(2):296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Atkinson W, Forghani R, Wojtkiewicz GR, et al. Ligation of the jugular veins does not result in brain inflammation or demyelination in mice. PLoS ONE. 2012;7(3).

  24. Rewell SSJ, Churilov L, Sidon TK, et al. Evolution of ischemic damage and behavioural deficit over 6 months after MCAo in the rat: selecting the optimal outcomes and statistical power for multi-centre preclinical trials. PLoS ONE. 2017;12(2).

  25. Hilal R, Poittevin M, Pasteur-Rousseau A, et al. Diabetic ephrin-B2-stimulated peripheral blood mononuclear cells enhance poststroke recovery in mice. Stem Cells Int. 2018;2018.

  26. Marinescu M, Bouley J, Chueh J, Fisher M, Henninger N. Clot injection technique affects thrombolytic efficacy in a rat embolic stroke model: implications for translaboratory collaborations. J Cereb Blood Flow Metab. 2014;34(4):677–82.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mukhopadhyay S, Johnson TA, Duru N, Buzza MS, Pawar NR, Sarkar R, et al. Fibrinolysis and inflammation in venous thrombus resolution. Front Immunol. 2019;10:1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aleman MM, Walton BL, Byrnes JR, Wolberg AS. Fibrinogen and red blood cells in venous thrombosis. Thromb Res. 2014;133(Suppl 1):S38–40.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chandrashekar A, Singh G, Null JG, Sikalas N, Labropoulos N. Mechanical and biochemical role of fibrin within a venous thrombus. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg. 2018;55(3):417–24.

    Article  Google Scholar 

  30. Mutch NJ, Thomas L, Moore NR, Lisiak KM, Booth NA. TAFIa, PAI-1 and alpha-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots. J Thromb Haemost JTH. 2007;5(4):812–7.

    Article  CAS  PubMed  Google Scholar 

  31. Bonnard T, Law LS, Tennant Z, Hagemeyer CE. Development and validation of a high throughput whole blood thrombolysis plate assay. Sci Rep. 2017;7(1):2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holland CK, Vaidya SS, Datta S, Coussios C-C, Shaw GJ. Ultrasound-enhanced tissue plasminogen activator thrombolysis in an in vitro porcine clot model. Thromb Res. 2008;121(5):663–73.

    Article  CAS  PubMed  Google Scholar 

  33. Duman T, Uluduz D, Midi I, Bektas H, Kablan Y, Goksel BK, et al. A multicenter study of 1144 patients with cerebral venous thrombosis: the VENOST study. J Stroke Cerebrovasc Dis. 2017;26(8):1848–57.

    Article  PubMed  Google Scholar 

  34. Dentali F, Gianni M, Crowther MA, Ageno W. Natural history of cerebral vein thrombosis: a systematic review. Blood. 2006;108(4):1129–34.

    Article  CAS  PubMed  Google Scholar 

  35. Kumral E, Polat F, Uzunköprü C, Çallı C, Kitiş Ö. The clinical spectrum of intracerebral hematoma, hemorrhagic infarct, non-hemorrhagic infarct, and non-lesional venous stroke in patients with cerebral sinus-venous thrombosis: the clinical/neuroradiological spectrum of cerebral sinus-vein thrombosis. Eur J Neurol. 2012;19(4):537–43.

    Article  CAS  PubMed  Google Scholar 

  36. Schaller C, Nakase H, Kotani A, Nishioka T, Meyer B, Sakaki T. Impairment of autoregulation following cortical venous occlusion in the rat. Neurol Res. 2002;24(2):210–4.

    Article  PubMed  Google Scholar 

  37. Schaller B, Graf R. Cerebral venous infarction: the pathophysiological concept. Cerebrovasc Dis. 2004;18(3):179–88.

    Article  CAS  PubMed  Google Scholar 

  38. Shintaku M, Yasui N. Chronic superior sagittal sinus thrombosis with phlebosclerotic changes of the subarachnoid and intracerebral veins. Neuropathol Off J Jpn Soc Neuropathol. 2006;26(4):323–8.

    Article  Google Scholar 

  39. Uemura M, Tsukamoto Y, Akaiwa Y, Watanabe M, Tazawa A, Kasahara S, et al. Cerebral venous sinus thrombosis due to oral contraceptive use: postmortem 3T-MRI and autopsy findings. Hum Pathol Case Rep. 2016;6:32–6.

    Article  Google Scholar 

  40. Furie B, Furie BC. In vivo thrombus formation. J Thromb Haemost. 2007;5(s1):12–7.

    Article  CAS  PubMed  Google Scholar 

  41. Nagai M, Terao S, Yilmaz G, Yilmaz CE, Esmon CT, Watanabe E, et al. Roles of inflammation and the activated protein C pathway in the brain edema associated with cerebral venous sinus thrombosis. Stroke J Cereb Circ. 2010;41(1):147–52.

    Article  Google Scholar 

  42. Kimura R, Nakase H, Tamaki R, Sakaki T. Vascular endothelial growth factor antagonist reduces brain edema formation and venous infarction. Stroke. 2005;36(6):1259–63.

    Article  CAS  PubMed  Google Scholar 

  43. Röttger C, Trittmacher S, Gerriets T, Blaes F, Kaps M, Stolz E. Reversible MR imaging abnormalities following cerebral venous thrombosis. Am J Neuroradiol. 2005;26(3):607–13.

    PubMed  PubMed Central  Google Scholar 

  44. Wolberg AS, Aleman MM, Leiderman K, Machlus KR. Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited. Anesth Analg. 2012;114(2):275–85.

    Article  CAS  PubMed  Google Scholar 

  45. Dorr A, Sled JG, Kabani N. Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. NeuroImage. 2007;35(4):1409–23.

    Article  CAS  PubMed  Google Scholar 

  46. Mancini M, Greco A, Tedeschi E, et al. Head and neck veins of the mouse. A magnetic resonance, micro computed tomography and high frequency color Doppler ultrasound study. PloS One. 2015;10(6):e0129912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wolters M, van Hoof RHM, Wagenaar A, Douma K, van Zandvoort MAMJ, Hackeng TH, et al. MRI artifacts in the ferric chloride thrombus animal model: an alternative solution. J Thromb Haemost. 2013;11(9):1766–9.

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Tan H-Q, Li M-H, Sun XJ, Fu CM, Zhu YQ, et al. Development of a new model of transvenous thrombosis in the pig superior sagittal sinus using thrombin injection and balloon occlusion. J Neuroradiol. 2010;37(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  49. Srivastava AK, Gupta RK, Haris M, Ray M, Kalita J, Misra UK. Cerebral venous sinus thrombosis: developing an experimental model. J Neurosci Methods. 2007;161(2):220–2.

    Article  PubMed  Google Scholar 

  50. Röttger C, Bachmann G, Gerriets T, Kaps M, Kuchelmeister K, Schachenmayr W, et al. A new model of reversible sinus sagittalis superior thrombosis in the rat: magnetic resonance imaging changes. Neurosurgery. 2005;57(3):573–80.

    Article  PubMed  Google Scholar 

Download references

Code Availability

Software application or custom code: not applicable.

Funding

Dr. Bourrienne is the recipient of a grant poste d’accueil INSERM. This study was supported by INSERM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Charlotte Bourrienne.

Ethics declarations

Ethics Approval and Consent to Participate

All scientific procedures using animals were conducted according to French veterinary guidelines and those formulated by the European Community for experimental animal use (L358-86/609EEC) and were approved by the Committee on the Ethics of Animal Experiments (Paris Nord no. 121, approval number no. 14070). This article does not contain any studies with human participants performed by any of the authors. Consent to participate is not applicable.

Consent for Publication

All authors have read and approved the submission of the manuscript.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourrienne, MC., Loyau, S., Benichi, S. et al. A Novel Mouse Model for Cerebral Venous Sinus Thrombosis. Transl. Stroke Res. 12, 1055–1066 (2021). https://doi.org/10.1007/s12975-021-00898-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00898-1

Keywords

Navigation