Skip to main content

Advertisement

Log in

Higher Plasma Osteopontin Concentrations Associated with Subsequent Development of Chronic Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

A matricellular protein osteopontin (OPN) is considered to exert neuroprotective and healing effects on neurovascular injuries in an acute phase of aneurysmal subarachnoid hemorrhage (SAH). However, the relationships between OPN expression and chronic shunt-dependent hydrocephalus (SDHC) have never been investigated. In 166 SAH patients (derivation and validation cohorts, 110 and 56, respectively), plasma OPN levels were serially measured at days1−3, 4−6, 7−9, and 10−12 after aneurysmal obliteration. The OPN levels and clinical factors were compared between patients with and without subsequent development of chronic SDHC. Plasma OPN levels in the SDHC patients increased from days 1−3 to days 4−6 and remained high thereafter, while those in the non-SDHC patients peaked at days 4−6 and then decreased over time. Plasma OPN levels had no correlation with serum levels of C-reactive protein (CRP), a systemic inflammatory marker. Univariate analyses showed that age, modified Fisher grade, acute hydrocephalus, cerebrospinal fluid drainage, and OPN and CRP levels at days 10−12 were significantly different between patients with and without SDHC. Multivariate analyses revealed that higher plasma OPN levels at days 10−12 were an independent factor associated with the development of SDHC, in addition to a more frequent use of cerebrospinal fluid drainage and higher modified Fisher grade at admission. Plasma OPN levels at days 10−12 maintained similar discrimination power in the validation cohort and had good calibration on the Hosmer-Lemeshow goodness-of-fit test. Prolonged higher expression of OPN may contribute to the development of post-SAH SDHC, possibly by excessive repairing effects promoting fibrosis in the subarachnoid space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Xie Z, Hu X, Zan X, Lin S, Li H, You C. Predictors of shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage? A systematic review and meta-analysis. World Neurosurg. 2017;106:844–60.

    Article  Google Scholar 

  2. Adil SM, Liu B, Charalambous LT, Kiyani M, Gramer R, Swisher CB, et al. Healthcare economics of hydrocephalus after aneurysmal subarachnoid hemorrhage in the United States. Transl Stroke Res. 2019;10:650–63.

    Article  Google Scholar 

  3. Suzuki H, Muramatsu M, Tanaka K, Fujiwara H, Kojima T, Taki W. Cerebrospinal fluid ferritin in chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurol. 2006;253:1170–6.

    Article  CAS  Google Scholar 

  4. Nakatsuka Y, Kawakita F, Yasuda R, Umeda Y, Toma N, Sakaida H, et al. Preventive effects of cilostazol against the development of shunt-dependent hydrocephalus after subarachnoid hemorrhage. J Neurosurg. 2017;127:319–26.

    Article  CAS  Google Scholar 

  5. Chen S, Luo J, Reis C, Manaenko A, Zhang J. Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment. Biomed Res Int. 2017;2017:8584753. https://doi.org/10.1155/2017/8584753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki H, Kinoshita N, Imanaka-Yoshida K, Yoshida T, Taki W. Cerebrospinal fluid tenascin-C increases preceding the development of chronic shunt-dependent hydrocephalus after subarachnoid hemorrhage. Stroke. 2008;39:1610–2.

    Article  CAS  Google Scholar 

  7. Zhou Y, Yao Y, Sheng L, Zhang J, Zhang JH, Shao A. Osteopontin as a candidate of therapeutic application for the acute brain injury. J Cell Mol Med. 2020;24:8918–29.

    Article  CAS  Google Scholar 

  8. Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol. 2019;322:113057. https://doi.org/10.1016/j.expneurol.2019.113057.

    Article  CAS  PubMed  Google Scholar 

  9. Okamoto H, Imanaka-Yoshida K. Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther. 2012;30:e198–209.

    Article  CAS  Google Scholar 

  10. Nakatsuka Y, Shiba M, Nishikawa H, Terashima M, Kawakita F, Fujimoto M, et al. Acute-phase plasma osteopontin as an independent predictor for poor outcome after aneurysmal subarachnoid hemorrhage. Mol Neurobiol. 2018;55:6841–9.

    Article  CAS  Google Scholar 

  11. Abate MG, Moretto L, Licari I, Esposito T, Capuano L, Olivieri C, et al. Osteopontin in the cerebrospinal fluid of patients with severe aneurysmal subarachnoid hemorrhage. Cells. 2019;8:695. https://doi.org/10.3390/cells8070695.

    Article  CAS  PubMed Central  Google Scholar 

  12. Suzuki H, Nishikawa H, Kawakita F. Matricellular proteins as possible biomarkers for early brain injury after aneurysmal subarachnoid hemorrhage. Neural Regen Res. 2018;13:1175–8.

    Article  Google Scholar 

  13. Tsukui T, Ueha S, Abe J, Hashimoto SI, Shichino S, Shimaoka T, et al. Qualitative rather than quantitative changes are hallmarks of fibroblasts in bleomycin-induced pulmonary fibrosis. Am J Pathol. 2013;183:758–73.

    Article  CAS  Google Scholar 

  14. Dong J, Ma Q. Osteopontin enhances multi-walled carbon nanotube-triggered lung fibrosis by promoting TGF-β1 activation and myofibroblast differentiation. Part Fibre Toxicol. 2017;14:18. https://doi.org/10.1186/s12989-017-0198-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suzuki H. Inflammation: a good research target to improve outcomes of poor-grade subarachnoid hemorrhage. Transl Stroke Res. 2019;10:597–600.

    Article  CAS  Google Scholar 

  16. Frontera JA, Claassen J, Schmidt JM, Wartenberg KE, Temes R, Connolly ES, et al. Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the modified Fisher scale. Neurosurgery. 2006;59:21–6.

    Article  Google Scholar 

  17. Vergouwen MDI, Vermeulen M, van Gijn J, Rinkel GJE, Wijdicks EF, Muizelaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41:2391–5.

    Article  Google Scholar 

  18. Germanwala AV, Huang J, Tamargo RJ. Hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am. 2010;21:263–70.

    Article  Google Scholar 

  19. Bae IS, Yi HJ, Choi KS, Chun HJ. Comparison of incidence and risk factors for shunt-dependent hydrocephalus in aneurysmal subarachnoid hemorrhage patients. J Cerebrovasc Endovasc Neurosurg. 2014;16:78–84.

    Article  Google Scholar 

  20. Wilson CD, Safavi-Abbasi S, Sun H, Kalani MYS, Zhao YD, Levitt MR, et al. Meta-analysis and systematic review of risk factors for shunt dependency after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;126:586–95.

    Article  Google Scholar 

  21. Erixon HO, Sorteberg A, Sorteberg W, Eide PK. Predictors of shunt dependency after aneurysmal subarachnoid hemorrhage: results of a single-center clinical trial. Acta Neurochir. 2014;156:2059–69.

    Article  Google Scholar 

  22. Massicotte EM, Del Bigio MR. Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to chronic hydrocephalus. J Neurosurg. 1999;91:80–4.

    Article  CAS  Google Scholar 

  23. Motohashi O, Suzuki M, Shida N, Umezawa K, Ohtoh T, Sakurai Y, et al. Subarachnoid haemorrhage induced proliferation of leptomeningeal cells and deposition of extracellular matrices in the arachnoid granulations and subarachnoid space: immunohistochemical study. Acta Neurochir. 1995;136:88–91.

    Article  CAS  Google Scholar 

  24. Sheehan JP, Polin RS, Sheehan JM, Baskaya MK, Kassell NF. Factors associated with hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1999;45:1120–8.

    Article  CAS  Google Scholar 

  25. Johanson CE, Szmydynger-Chodobska J, Chodobski A, Baird A, McMillan P, Stopa EG. Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Phys. 1999;277:R263–71.

    CAS  Google Scholar 

  26. Kitazawa K, Tada T. Elevation of transforming growth factor-beta1 level in cerebrospinal fluid of patients with communicating hydrocephalus after subarachnoid hemorrhage. Stroke. 1994;25:1400–4.

    Article  CAS  Google Scholar 

  27. Motohashi O, Suzuki M, Yanai N, Umezawa K, Shida N, Yoshimoto T. Thrombin and TGF-beta promote human leptomeningeal cell proliferation in vitro. Neurosci Lett. 1995;190:105–8.

    Article  CAS  Google Scholar 

  28. Tada T, Kanaji M, Kobayashi S. Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-beta1. J Neuroimmunol. 1994;50:153–8.

    Article  CAS  Google Scholar 

  29. Chiodoni C, Colombo MP, Sangaletti S. Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev. 2010;29:295–307.

    Article  CAS  Google Scholar 

  30. Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Matricellular proteins osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest. 2001;107:1055–61.

    Article  CAS  Google Scholar 

  31. Suzuki H, Hasegawa Y, Chen W, Kanamaru K, Zhang JH. Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Ann Neurol. 2010;68:650–60.

    Article  CAS  Google Scholar 

  32. Wu J, Zhang Y, Yang P, Enkhjargal B, Manaenko A, Tang J, et al. Recombinant osteopontin stabilizes smooth muscle cell phenotype via integrin receptor/integrin-linked kinase/Rac-1 pathway after subarachnoid hemorrhage in rats. Stroke. 2016;47:1319–27.

    Article  CAS  Google Scholar 

  33. Enkhjargal B, McBride DW, Manaenko A, Reis C, Sakai Y, Tang J, et al. Intranasal administration of vitamin D attenuates blood–brain barrier disruption through endogenous upregulation of osteopontin and activation of CD44/P-gp glycosylation signaling after subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab. 2017;37:2555–66.

    Article  CAS  Google Scholar 

  34. Suzuki H, Hasegawa Y, Kanamaru K, Zhang JH. Mechanisms of osteopontin-induced stabilization of blood-brain barrier disruption after subarachnoid hemorrhage in rats. Stroke. 2010;41:1783–90.

    Article  CAS  Google Scholar 

  35. Sun CM, Enkhjargal B, Reis C, Zhou KR, Xie ZY, Wu LY, et al. Osteopontin attenuates early brain injury through regulating autophagy-apoptosis interaction after subarachnoid hemorrhage in rats. CNS Neurosci Ther. 2019;25:1162–72.

    Article  CAS  Google Scholar 

  36. He J, Liu M, Liu Z, Luo L. Recombinant osteopontin attenuates experimental cerebral vasospasm following subarachnoid hemorrhage in rats through an anti-apoptotic mechanism. Brain Res. 1611;2015:74–83.

    Google Scholar 

  37. Sun C, Enkhjargal B, Reis C, Zhang T, Zhu Q, Zhou K, et al. Osteopontin-enhanced autophagy attenuates early brain injury via FAK–ERK pathway and improves long-term outcome after subarachnoid hemorrhage in rats. Cells. 2019;8:980. https://doi.org/10.3390/cells8090980.

    Article  CAS  PubMed Central  Google Scholar 

  38. Abdelaziz Mohamed I, Gadeau AP, Hasan A, Abdulrahman N, Mraiche F. Osteopontin: a promising therapeutic target in cardiac fibrosis. Cells. 2019;8:1558. https://doi.org/10.3390/cells8121558.

    Article  CAS  PubMed Central  Google Scholar 

  39. Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009;3:311–22.

    Article  Google Scholar 

  40. Lin R, Wu S, Zhu D, Qin M, Liu X. Osteopontin induces atrial fibrosis by activating Akt/GSK-3β/β-catenin pathway and suppressing autophagy. Life Sci. 2020;245:117328. https://doi.org/10.1016/j.lfs.2020.117328.

    Article  CAS  PubMed  Google Scholar 

  41. Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung HP, et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol. 2012;71:743–52.

    Article  CAS  Google Scholar 

  42. Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci. 2013;33:12870–86.

    Article  CAS  Google Scholar 

  43. Gliem M, Krammes K, Liaw L, van Rooijen N, Hartung HP, Jander S. Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia. 2015;63:2198–207.

    Article  Google Scholar 

  44. Ueno M, Chiba Y, Matsumoto K, Murakami R, Fujihara R, Kawauchi M, et al. Blood-brain barrier damage in vascular dementia. Neuropathology. 2016;36:115–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Chiduru Nakamura (Department of Neurosurgery, Mie University Graduate School of Medicine) for her technical assistance.

Funding

This work was supported by JSPS KAKENHI Grant Number JP17K10825 and JP20K09346 to Dr. Hidenori Suzuki.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Hidenori Suzuki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the ethical committee of Mie University Hospital (Ethics approval number: 2544 and H2018-031).

Informed Consent

The ethical committee waived the need for informed consent with opt-out.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

pSEED group members along with their affiliations listed in Online Resource.

Supplementary Information

ESM 1

(PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asada, R., Nakatsuka, Y., Kanamaru, H. et al. Higher Plasma Osteopontin Concentrations Associated with Subsequent Development of Chronic Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage. Transl. Stroke Res. 12, 808–816 (2021). https://doi.org/10.1007/s12975-020-00886-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00886-x

Keywords

Navigation