Skip to main content

Advertisement

Log in

Protein-Energy Malnutrition Exacerbates Stroke-Induced Forelimb Abnormalities and Dampens Neuroinflammation

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Protein-energy malnutrition (PEM) pre-existing at stroke onset is believed to worsen functional outcome, yet the underlying mechanisms are not fully understood. Since brain inflammation is an important modulator of neurological recovery after stroke, we explored the impact of PEM on neuroinflammation in the acute period in relation to stroke-initiated sensori-motor abnormalities. Adult rats were fed a low-protein (LP) or normal protein (NP) diet for 28 days before inducing photothrombotic stroke (St) in the forelimb region of the motor cortex or sham surgery; the diets continued for 3 days after the stroke. Protein-energy status was assessed by a combination of body weight, food intake, serum acute phase proteins and corticosterone, and liver lipid content. Deficits in motor function were evaluated in the horizontal ladder walking and cylinder tasks at 3 days after stroke. The glial response and brain elemental signature were investigated by immunohistochemistry and micro-X-ray fluorescence imaging, respectively. The LP-fed rats reduced food intake, resulting in PEM. Pre-existing PEM augmented stroke-induced abnormalities in forelimb placement accuracy on the ladder; LP-St rats made more errors (29 ± 8%) than the NP-St rats (15 ± 3%; P < 0.05). This was accompanied by attenuated astrogliosis in the peri-infarct area by 18% and reduced microglia activation by up to 41 and 21% in the peri-infarct area and the infarct rim, respectively (P < 0.05). The LP diet altered the cortical Zn, Ca, and Cl signatures (P < 0.05). Our data suggest that proactive treatment of pre-existing PEM could be essential for optimal post-stroke recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foley N, Teasell R, Richardson M, Bhogal S, J. S. Nutritional interventions following stroke: evidence-based review of stroke rehabilitation (EBRSR). http://www.ebrsr.com/evidence-review/16-nutritional-interventions-following-stroke. September 2016 Accessed February 23, 2017.

  2. Davis JP, Wong AA, Schluter PJ, Henderson RD, O'Sullivan JD, Read SJ. Impact of premorbid undernutrition on outcome in stroke patients. Stroke. 2004;35(8):1930–4. https://doi.org/10.1161/01.STR.0000135227.10451.c9.

    Article  PubMed  Google Scholar 

  3. Martineau J, Bauer JD, Isenring E, Cohen S. Malnutrition determined by the patient-generated subjective global assessment is associated with poor outcomes in acute stroke patients. Clin Nutr. 2005;24(6):1073–7. https://doi.org/10.1016/j.clnu.2005.08.010.

    Article  PubMed  Google Scholar 

  4. Yoo SH, Kim JS, Kwon SU, Yun SC, Koh JY, Kang DW. Undernutrition as a predictor of poor clinical outcomes in acute ischemic stroke patients. Arch Neurol. 2008;65(1):39–43. https://doi.org/10.1001/archneurol.2007.12.

    Article  PubMed  Google Scholar 

  5. Gomes F, Emery PW, Weekes CE. Risk of malnutrition is an independent predictor of mortality, length of hospital stay, and hospitalization costs in stroke patients. J Stroke Cerebrovasc Dis. 2016;25(4):799–806. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.12.017.

    Article  PubMed  Google Scholar 

  6. Food Trial Collaboration. Poor nutritional status on admission predicts poor outcomes after stroke: observational data from the FOOD trial. Stroke. 2003;34(6):1450–6. https://doi.org/10.1161/01.STR.0000074037.49197.8C.

    Article  Google Scholar 

  7. Kokura Y, Maeda K, Wakabayashi H, Nishioka S, Higashi S. High nutritional-related risk on admission predicts less improvement of functional independence measure in geriatric stroke patients: a retrospective cohort study. J Stroke Cerebrovasc Dis. 2016;25(6):1335–41. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.01.048.

    Article  PubMed  Google Scholar 

  8. Nii M, Maeda K, Wakabayashi H, Nishioka S, Tanaka A. Nutritional improvement and energy intake are associated with functional recovery in patients after cerebrovascular disorders. J Stroke Cerebrovasc Dis. 2016;25(1):57–62. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.08.033.

    Article  PubMed  Google Scholar 

  9. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808. https://doi.org/10.1038/nm.2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, et al. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia. 2014;62(12):2022–33. https://doi.org/10.1002/glia.22723.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Patel AR, Ritzel R, Mccullough LD, Liu F. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013;5(2):73–90.

    PubMed  PubMed Central  Google Scholar 

  12. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50(4):427–34. https://doi.org/10.1002/glia.20207.

    Article  PubMed  Google Scholar 

  13. Denes A, Ferenczi S, Kovacs KJ. Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood-brain barrier damage and brain oedema independently of infarct size. J Neuroinflammation. 2011;8(1):164. https://doi.org/10.1186/1742-2094-8-164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langdon KD, Maclellan CL, Corbett D. Prolonged, 24-h delayed peripheral inflammation increases short- and long-term functional impairment and histopathological damage after focal ischemia in the rat. J Cereb Blood Flow Metab. 2010;30(8):1450–9. https://doi.org/10.1038/jcbfm.2010.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bobyn PJ, Corbett D, Saucier DM, Noyan-Ashraf MH, Juurlink BH, Paterson PG. Protein-energy malnutrition impairs functional outcome in global ischemia. Exp Neurol. 2005;196(2):308–15. https://doi.org/10.1016/j.expneurol.2005.08.006.

    Article  CAS  PubMed  Google Scholar 

  16. Ji L, Nazarali AJ, Paterson PG. Protein-energy malnutrition increases activation of the transcription factor, nuclear factor kappaB, in the gerbil hippocampus following global ischemia. J Nutr Biochem. 2008;19(11):770–7. https://doi.org/10.1016/j.jnutbio.2007.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith SE, Prosser-Loose EJ, Colbourne F, Paterson PG. Protein-energy malnutrition alters thermoregulatory homeostasis and the response to brain ischemia. Curr Neurovasc Res. 2011;8(1):64–74. https://doi.org/10.2174/156720211794520206.

    Article  CAS  PubMed  Google Scholar 

  18. Yaqoob P, Calder PC. Nutrition in immune function. In: Zempleni J, Daniel H, editors. Molecular nutrition. Cambridge: CABI Publishing; 2003. p. 349–67.

    Chapter  Google Scholar 

  19. Young W, Rappaport ZH, Chalif DJ, Flamm ES. Regional brain sodium, potassium, and water changes in the rat middle cerebral artery occlusion model of ischemia. Stroke. 1987;18(4):751–9. https://doi.org/10.1161/01.STR.18.4.751.

    Article  CAS  PubMed  Google Scholar 

  20. Caine S, Hackett MJ, Hou H, Kumar S, Maley J, Ivanishvili Z, et al. A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke. Neurobiol Dis. 2016;91:132–42. https://doi.org/10.1016/j.nbd.2016.03.006.

    Article  CAS  PubMed  Google Scholar 

  21. Baier S, Kramer P, Grudzenski S, Fatar M, Kirsch S, Schad LR. Chlorine and sodium chemical shift imaging during acute stroke in a rat model at 9.4 Tesla. Magn Reson Mater Phys. 2014;27(1):71–9. https://doi.org/10.1007/s10334-013-0398-z.

    Article  CAS  Google Scholar 

  22. Nilsson P, Laursen H, Hillered L, Hansen AJ. Calcium movements in traumatic brain injury: the role of glutamate receptor-operated ion channels. J Cerebr Blood Flow Metab. 1996;16(2):262–70. https://doi.org/10.1097/00004647-199603000-00011.

    Article  CAS  Google Scholar 

  23. Annunziato L, Boscia F, Pignataro G. Ionic transporter activity in astrocytes, microglia, and oligodendrocytes during brain ischemia. J Cereb Blood Flow Metab. 2013;33(7):969–82. https://doi.org/10.1038/jcbfm.2013.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galasso SL, Dyck RH. The role of zinc in cerebral ischemia. Mol Med. 2007;13(7–8):380–7. https://doi.org/10.2119/2007-00044.Galasso.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Mueller RN, Zeng Y, et al. Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol. 2006;198(2):285–93. https://doi.org/10.1016/j.expneurol.2005.08.030.

    Article  CAS  PubMed  Google Scholar 

  26. Alaverdashvili M, Li X, Paterson PG. Protein-energy malnutrition causes deficits in motor function in adult male rats. J Nutr. 2015;145(11):2503–11. https://doi.org/10.3945/jn.115.216382.

    Article  CAS  PubMed  Google Scholar 

  27. Alaverdashvili M, Paterson PG, Bradley MP. Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model. J Neurosci Methods. 2015;247:58–66. https://doi.org/10.1016/j.jneumeth.2015.03.029.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Metz GA, Whishaw IQ. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods. 2002;115(2):169–79. https://doi.org/10.1016/S0165-0270(02)00012-2.

    Article  PubMed  Google Scholar 

  29. Schallert T, Woodlee M. Orienting and placing. In: Whishaw IQ, Kolb B, editors. The behavior of the laboratory rat. New York: Oxford University Press; 2005. p. 129–40.

    Google Scholar 

  30. Alaverdashvili M, Hackett MJ, Pickering IJ, Paterson PG. Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat. NeuroImage. 2014;103:502–10. https://doi.org/10.1016/j.neuroimage.2014.08.046.

    Article  CAS  PubMed  Google Scholar 

  31. Nagai N, Kawao N, Okada K, Ishida C, Okumoto K, Ueshima S, et al. Initial brain lesion size affects the extent of subsequent pathophysiological responses. Brain Res. 2010;1322:109–17. https://doi.org/10.1016/j.brainres.2010.01.077.

    Article  CAS  PubMed  Google Scholar 

  32. Alaverdashvili M, Hackett MJ, Caine S, Paterson PG. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats. NeuroImage. 2017;149:275–84. https://doi.org/10.1016/j.neuroimage.2017.02.010.

    Article  CAS  PubMed  Google Scholar 

  33. Schroeter M, Jander S, Huitinga I, Witte OW, Stoll G. Phagocytic response in photochemically induced infarction of rat cerebral cortex. The role of resident microglia. Stroke. 1997;28(2):382–6. https://doi.org/10.1161/01.STR.28.2.382.

    Article  CAS  PubMed  Google Scholar 

  34. Peters L, O'Connor C, Giroux I, Teasell R, Foley N. Screening and assessment of nutritional status following stroke: results from a national survey of registered dietitians in Canada. Disabil Rehabil. 2015;37(26):1–5. https://doi.org/10.3109/09638288.2015.1027006.

    Article  Google Scholar 

  35. Schroeter M, Franke C, Stoll G, Hoehn M. Dynamic changes of magnetic resonance imaging abnormalities in relation to inflammation and glial responses after photothrombotic cerebral infarction in the rat brain. Acta Neuropathol. 2001;101(2):114–22.

    CAS  PubMed  Google Scholar 

  36. Nowicka D, Rogozinska K, Aleksy M, Witte OW, Skangiel-Kramska J. Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp (Wars). 2008;68(2):155–68.

    Google Scholar 

  37. Amantea D, Tassorelli C, Petrelli F, Certo M, Bezzi P, Micieli G, et al. Understanding the multifaceted role of inflammatory mediators in ischemic stroke. Curr Med Chem. 2014;21(18):2098–117. https://doi.org/10.2174/0929867321666131227162634.

    Article  CAS  PubMed  Google Scholar 

  38. Petito CK, Morgello S, Felix JC, Lesser ML. The two patterns of reactive astrocytosis in postischemic rat brain. J Cereb Blood Flow Metab. 1990;10(6):850–9. https://doi.org/10.1038/jcbfm.1990.141.

    Article  CAS  PubMed  Google Scholar 

  39. Schiffer D, Giordana MT, Migheli A, Giaccone G, Pezzotta S, Mauro A. Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain. Brain Res. 1986;374(1):110–8. https://doi.org/10.1016/0006-8993(86)90399-9.

    Article  CAS  PubMed  Google Scholar 

  40. Giulian D, Corpuz M, Chapman S, Mansouri M, Robertson C. Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J Neurosci Res. 1993;36(6):681–93. https://doi.org/10.1002/jnr.490360609.

    Article  CAS  PubMed  Google Scholar 

  41. Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation. 2011;8(1):174. https://doi.org/10.1186/1742-2094-8-174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi S, Hatashita S, Taba Y, Sun XZ, Kubota Y, Yoshida S. Determination of the spatial distribution of major elements in the rat brain with X-ray fluorescence analysis. J Neurosci Methods. 2000;100(1–2):53–62. https://doi.org/10.1016/S0165-0270(00)00231-4.

    Article  CAS  PubMed  Google Scholar 

  43. Anrather J, Iadecola C. Inflammation and stroke: an overview. Neurotherapeutics. 2016;13(4):661–70. https://doi.org/10.1007/s13311-016-0483-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lowry SF, Coyle S. Hypercatabolic states. In: Ross AC, Caballero B, Cousins R, Tucker K, Ziegler R, editors. Modern nutrition in health and disease. Philadelphia: Wolters KluwerHealth / Lippincott Williams and Wilkins; 2014. p. 1261–72.

    Google Scholar 

Download references

Acknowledgements

The authors thank Sonia Cyrenne, Angela Cooper, and Megan Morgan for technical assistance and Samuel M. Webb and Courtney Roach for experimental station setup at Stanford Synchrotron Radiation Lightsource (SSRL) and providing thoughtful comments on the data set.

Sources of Funding

This study was funded by the Canadian Institutes of Health Research (CIHR)/Heart and Stroke Foundation of Canada (HSF) Grant No. 99472 (P.G.P. and H.N.); CIHR Operating Grant No. 111124 (P.G.P.); and HSF Grant-In-Aid (P.G.P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariam Alaverdashvili or Phyllis G. Paterson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Disclosures

Use of the SSRL, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS) (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH.

Electronic Supplementary Material

ESM 1

(DOCX 10.3 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaverdashvili, M., Caine, S., Li, X. et al. Protein-Energy Malnutrition Exacerbates Stroke-Induced Forelimb Abnormalities and Dampens Neuroinflammation. Transl. Stroke Res. 9, 622–630 (2018). https://doi.org/10.1007/s12975-018-0613-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-018-0613-3

Keywords

Navigation