Skip to main content

Advertisement

Log in

Inhibition of VEGF Signaling Reduces Diabetes-Exacerbated Brain Swelling, but Not Infarct Size, in Large Cerebral Infarction in Mice

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neuhaus AA, Rabie T, Sutherland BA, Papadakis M, Hadley G, Cai R, et al. Importance of preclinical research in the development of neuroprotective strategies for ischemic stroke. JAMA Neurol. 2014;71(5):634–9. https://doi.org/10.1001/jamaneurol.2013.6299.

    Article  PubMed  Google Scholar 

  2. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77. https://doi.org/10.1002/ana.20741.

    Article  PubMed  CAS  Google Scholar 

  3. Dirnagl U. Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab. 2006;26(12):1465–78. https://doi.org/10.1038/sj.jcbfm.9600298.

    Article  PubMed  Google Scholar 

  4. Rosenberg GA. Ischemic brain edema. Prog Cardiovasc Dis. 1999;42(3):209–16. https://doi.org/10.1016/S0033-0620(99)70003-4.

    Article  PubMed  CAS  Google Scholar 

  5. Schwab S, Aschoff A, Spranger M, Albert F, Hacke W. The value of intracranial pressure monitoring in acute hemispheric stroke. Neurology. 1996;47(2):393–8. https://doi.org/10.1212/WNL.47.2.393.

    Article  PubMed  CAS  Google Scholar 

  6. Wijdicks EF, Diringer MN. Middle cerebral artery territory infarction and early brain swelling: progression and effect of age on outcome. Mayo Clin Proc. 1998;73(9):829–36. https://doi.org/10.4065/73.9.829.

    Article  PubMed  CAS  Google Scholar 

  7. Battey TW, et al. Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke. 2014;45(12):3643–8. https://doi.org/10.1161/STROKEAHA.114.006884.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pinto A, Tuttolomondo A, di Raimondo D, Fernandez P, Licata G. Cerebrovascular risk factors and clinical classification of strokes. Semin Vasc Med. 2004;4(3):287–303. https://doi.org/10.1055/s-2004-861497.

    Article  PubMed  Google Scholar 

  9. Hatashita S, Hoff JT. Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke. 1990;21(4):582–8. https://doi.org/10.1161/01.STR.21.4.582.

    Article  PubMed  CAS  Google Scholar 

  10. Keck PJ, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246(4935):1309–12. https://doi.org/10.1126/science.2479987.

    Article  PubMed  CAS  Google Scholar 

  11. Leung DW, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9. https://doi.org/10.1126/science.2479986.

    Article  PubMed  CAS  Google Scholar 

  12. Bechard D, et al. Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatter factor mitogenic activity. J Biol Chem. 2001;276(51):48341–9. https://doi.org/10.1074/jbc.M108395200.

    Article  PubMed  CAS  Google Scholar 

  13. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76. https://doi.org/10.1038/nm0603-669.

    Article  PubMed  CAS  Google Scholar 

  14. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Biochem J. 2011;437(2):169–83. https://doi.org/10.1042/BJ20110301.

    Article  PubMed  CAS  Google Scholar 

  15. Shin JW, Huggenberger R, Detmar M. Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood. 2008;112(6):2318–26. https://doi.org/10.1182/blood-2008-05-156331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rocha SF, Schiller M, Jing D, Li H, Butz S, Vestweber D, et al. Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. Circ Res. 2014;115(6):581–90. https://doi.org/10.1161/CIRCRESAHA.115.304718.

    Article  PubMed  CAS  Google Scholar 

  17. Okon EB, Chung AWY, Zhang H, Laher I, van Breemen C. Hyperglycemia and hyperlipidemia are associated with endothelial dysfunction during the development of type 2 diabetes. Can J Physiol Pharmacol. 2007;85(5):562–7. https://doi.org/10.1139/y07-026.

    Article  PubMed  CAS  Google Scholar 

  18. Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia. 2007;50(1):202–11. https://doi.org/10.1007/s00125-006-0485-z.

    Article  PubMed  CAS  Google Scholar 

  19. Kim E, Tolhurst AT, Cho S. Deregulation of inflammatory response in the diabetic condition is associated with increased ischemic brain injury. J Neuroinflammation. 2014;11(1):83. https://doi.org/10.1186/1742-2094-11-83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kim E, Yang J, Beltran CD, Cho S. Role of spleen-derived monocytes/macrophages in acute ischemic brain injury. J Cereb Blood Flow Metab. 2014;34(8):1411–9. https://doi.org/10.1038/jcbfm.2014.101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kim E, Febbraio M, Bao Y, Tolhurst AT, Epstein JM, Cho S. CD36 in the periphery and brain synergizes in stroke injury in hyperlipidemia. Ann Neurol. 2012;71(6):753–64. https://doi.org/10.1002/ana.23569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kim E, Woo MS, Qin L, Ma T, Beltran CD, Bao Y, et al. Daidzein augments cholesterol homeostasis via ApoE to promote functional recovery in chronic stroke. J Neurosci. 2015;35(45):15113–26. https://doi.org/10.1523/JNEUROSCI.2890-15.2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lin TN, He YY, Wu G, Khan M, Hsu CY. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke. 1993;24(1):117–21. https://doi.org/10.1161/01.STR.24.1.117.

    Article  PubMed  CAS  Google Scholar 

  24. ElAli A, Doeppner TR, Zechariah A, Hermann DM. Increased blood-brain barrier permeability and brain edema after focal cerebral ischemia induced by hyperlipidemia: role of lipid peroxidation and calpain-1/2, matrix metalloproteinase-2/9, and RhoA overactivation. Stroke. 2011;42(11):3238–44. https://doi.org/10.1161/STROKEAHA.111.615559.

    Article  PubMed  CAS  Google Scholar 

  25. Yang JP, Liu HJ, Liu XF. VEGF promotes angiogenesis and functional recovery in stroke rats. J Investig Surg. 2010;23(3):149–55. https://doi.org/10.3109/08941930903469482.

    Article  CAS  Google Scholar 

  26. Katzman R, Clasen R, Klatzo I, Meyer JS, Pappius HM, Waltz AG. Report of Joint Committee for Stroke Resources. IV. Brain edema in stroke. Stroke. 1977;8(4):512–40. https://doi.org/10.1161/01.STR.8.4.512.

    Article  PubMed  CAS  Google Scholar 

  27. Ergul A, Abdelsaid M, Fouda AY, Fagan SC. Cerebral neovascularization in diabetes: implications for stroke recovery and beyond. J Cereb Blood Flow Metab. 2014;34(4):553–63. https://doi.org/10.1038/jcbfm.2014.18.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Reeson P, Tennant KA, Gerrow K, Wang J, Weiser Novak S, Thompson K, et al. Delayed inhibition of VEGF signaling after stroke attenuates blood-brain barrier breakdown and improves functional recovery in a comorbidity-dependent manner. J Neurosci. 2015;35(13):5128–43. https://doi.org/10.1523/JNEUROSCI.2810-14.2015.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Prakash R, Li W, Qu Z, Johnson MA, Fagan SC, Ergul A. Vascularization pattern after ischemic stroke is different in control versus diabetic rats: relevance to stroke recovery. Stroke. 2013;44(10):2875–82. https://doi.org/10.1161/STROKEAHA.113.001660.

    Article  PubMed  Google Scholar 

  30. Tominaga T, Ohnishi ST. Interrelationship of brain edema, motor deficits, and memory impairment in rats exposed to focal ischemia. Stroke. 1989;20(4):513–8. https://doi.org/10.1161/01.STR.20.4.513.

    Article  PubMed  CAS  Google Scholar 

  31. Turner RC, et al. The role for infarct volume as a surrogate measure of functional outcome following ischemic stroke. J Syst Integr Neurosci. 2016;2(4) https://doi.org/10.15761/JSIN.1000136.

  32. Yoo AJ, Chaudhry ZA, Nogueira RG, Lev MH, Schaefer PW, Schwamm LH, et al. Infarct volume is a pivotal biomarker after intra-arterial stroke therapy. Stroke. 2012;43(5):1323–30. https://doi.org/10.1161/STROKEAHA.111.639401.

    Article  PubMed  CAS  Google Scholar 

  33. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111(12):1843–51. https://doi.org/10.1172/JCI17977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106(7):829–38. https://doi.org/10.1172/JCI9369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zechariah A, ElAli A, Hagemann N, Jin F, Doeppner TR, Helfrich I, et al. Hyperlipidemia attenuates vascular endothelial growth factor-induced angiogenesis, impairs cerebral blood flow, and disturbs stroke recovery via decreased pericyte coverage of brain endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33(7):1561–7. https://doi.org/10.1161/ATVBAHA.112.300749.

    Article  PubMed  CAS  Google Scholar 

  36. Roudnicky F, Poyet C, Wild P, Krampitz S, Negrini F, Huggenberger R, et al. Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Res. 2013;73(3):1097–106. https://doi.org/10.1158/0008-5472.CAN-12-1855.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Research reported in this study was supported by the National Institute of Health awards, NINDS R01NS077897 (SC), R01NS095359-10 (SC), and the Burke Foundation (SC).

Author information

Authors and Affiliations

Authors

Contributions

Eunhee Kim generated diabetic mice, characterized, performed MCAO and molecular analyses, and wrote the manuscript; Jiwon Yang and Keun Woo Park contributed to molecular and biochemical assessment; and Sunghee Cho designed the study and wrote the manuscript.

Corresponding author

Correspondence to Sunghee Cho.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants. The care and use of animals were followed by the ethical staindards of the Institutional Animal Care and Use Committee (IACUC) of Weill Cornell Medicine in accordance with the IACUC, National Institutes of Health, and ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E., Yang, J., Park, K.W. et al. Inhibition of VEGF Signaling Reduces Diabetes-Exacerbated Brain Swelling, but Not Infarct Size, in Large Cerebral Infarction in Mice. Transl. Stroke Res. 9, 540–548 (2018). https://doi.org/10.1007/s12975-017-0601-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0601-z

Keywords

Navigation