Skip to main content
Log in

Evaluation of Major Dietary Ingredients in Diverse Oats (Avena sativa L.) Germplasm

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Oat (Avena sativa L.) is one of the world’s most important cereal crops, owing to its use as an important source of essential nutrients for both humans and animals. In the present study, the main nutritional components of 975 oat germplasm accessions were investigated. Crude fiber content ranged from 0.08 to 6.79%, with a mean of 2.14%, whereas total dietary fiber content ranged from 5.32 to 17.59%, with a mean of 11.01%, β-glucan content ranged from 1.02 to 6.33%, with a mean of 3.05%, and lipid content ranged from 1.41 to 8.72%, with a mean of 4.73%. Furthermore, most of the germplasm accessions exhibited 1-3% crude fiber content in the range of 1-3%, 9-12% total dietary fiber content, 2-4% β-glucan content, and 4-5% lipid content. Both the crude fiber and total dietary fiber contents were significantly but weakly correlated with β-glucan content, and the nutritional contents of germplasm accessions from different countries varied significantly. The highest mean crude fiber, total dietary fiber, β-glucan, and lipid contents were exhibited by the germplasm accessions collected from Canada, the UK, the Netherlands, and Turkey, respectively, and the accessions that exhibited the highest crude fiber (n=4), total dietary fiber (n=7), β-glucan content (n=5), and lipid (n=12) contents were identified. These findings provide valuable information for breeding programs aiming to improve the nutritional value of already existing high-yielding oat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaltonen K, Laurikka P, Huhtala H, Mäki M, Kaukinen K, Kurppa K. 2017. The long-term consumption of oats in celiac disease patients is safe: a large cross-sectional study. Nutrients 9: 611

    Article  PubMed Central  CAS  Google Scholar 

  • Ahmad S, Rouf S, Bindu B, Ahmad N, Amir G, Khalid M, et al. 2014. Oats as a functional food: a review. Univers. J. Pharm. 3: 14–20

    Google Scholar 

  • Anderson TW. 1972. An introduction to multivariate analysis. Wiley Eastern, Pvt. Ltd., New Delhi

    Google Scholar 

  • Andersson AAM, Borjesdotter D. 2011. Effects of environment and variety on content and molecular weight of β-glucan in oats. J. Cereal Sci. 54: 122–128

    Article  CAS  Google Scholar 

  • Asp NG, Mattsson B, Onning G. 1992. Variation in dietary fibre, β-glucan, starch, protein, fat and hull content of oats grown in Sweden 1987–1989. Eur. J. Clin. Nutr. 46: 31–37

    CAS  PubMed  Google Scholar 

  • Brunner BR, Freed RD. 1994. Oat grain β-glucan content as affected by nitrogen level, location and year. Crop Sci. 34: 473–476

    Article  CAS  Google Scholar 

  • Chan GCF, Chan WK, Sze DMY. 2009. The effects of β-glucan on human immune and cancer cells. J. Hematol. Oncol. 2: 25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Raymond K. 2008. β-glucans in the treatment of diabetes and associated cardiovascular risks. Vasc. Health Risk Manag. 4: 1265–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comino I, Moreno MDL, Sousa C. 2015. Role of oats in celiac disease. World J. Gastroenterol. 21: 11825–11831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doehlert DC, McMullenb MS, Hammondb JJ. 2001. Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Sci. 41: 1066–1072

    Article  Google Scholar 

  • El Khoury D, Cuda C, Luhovyy BL, Anderson GH. 2012. β-glucan: health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012: 851362

    PubMed  Google Scholar 

  • Englyst H, Bingham S, Runswick S, Collinson E, Cummings J. 1989. Dietary fibre (non-starch polysaccharides) in cereal products. J. Hum. Nutr. Diet. 2: 253–271

    Article  Google Scholar 

  • Englyst HN, Cummings J. 1987. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods. J. Assoc. Off. Anal. Chem. 71: 808–814

    Google Scholar 

  • Estrada A, Yun CH, Van Kessel A, Li B, Hauta S, Laarveld B. 1997. Immunomodulatory activities of oat β-glucan in vitro and in vivo. Microbiol. Immunol. 41: 991–998

    Article  CAS  PubMed  Google Scholar 

  • Flander L, Salmenkallio-Marttila M, Suortti T, Autio K. 2007. Optimization of ingredients and baking process for improved whole meal oat bread quality. LWT- Food Sci. Technol. 40: 860–870

    Article  CAS  Google Scholar 

  • Frey KJ, Holland JB.1999. Nine cycles of recurrent selection of increased grain oil content in oat. Crop Sci. 39: 1636–1641

    Article  Google Scholar 

  • Guo L, Tong LT, Liu L, Zhong K, Qiu J, Zhou S. 2014. The cholesterol-lowering effects of oat varieties based on their difference in the composition of proteins and lipids. Lipids Health Dis. 13: 1–10

    Article  CAS  Google Scholar 

  • Hawerroth MC, Carvalho FIF, De Oliveira AC, De Silva JAG, Da Gutkoski LC, Sartori JF, et al. 2013. Adaptability and stability of white oat cultivars in relation to chemical composition of the caryopsis. Pesqui. Agropecuária Bras. 48: 42–50

    Article  Google Scholar 

  • Hawerroth MC, Da Silva JAG, Gutkoski LC, Arenhardt EG, Antonio Costa De Oliveira AC, De Carvalho FIF. 2015. Correlations between chemistry components of caryopsis in oat genotypes cultivated in different environments. Afr. J. Agr. Res. 10: 4295–4305

    Article  CAS  Google Scholar 

  • Herrera MP, Gao J, Vasanthan T, Temelli F, Henderson K. 2015. β-glucan content, viscosity, and solubility of Canadian grown oat as influenced by cultivar and growing location. Can. J. Plant Sci. 96: 183–196

    Article  CAS  Google Scholar 

  • Hou Q, Li Y, Li L, Cheng G, Sun X, Li S, Tian H. 2015. The metabolic effects of oats intake in patients with type 2 diabetes: a systematic review and meta-analysis. Nutrients. 7: 10369–10387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Zhao J, Zhao Q, Zheng J. 2015. Structure and characteristic of β-glucan in cereal: a review. J. Food Process. Pres. 39: 3145–3153

    Article  CAS  Google Scholar 

  • Kaur R, Kapoor R, Vikal Y, Kaur K. 2018. Assessing genetic diversity in dual purpose oat (Avena sativa L.) cultivars based on morphological and quality traits. Int. J. Curr. Microbiol. App. Sci. 7: 1574–1586

    Article  Google Scholar 

  • Kaur S, Bhardwaj RD, Kapoor R, Grewal SK. 2019. Biochemical characterization of oat (Avena sativa L.) genotypes with high nutritional potential. LWT - Food Sci. Technol. 110: 32–39

    Article  CAS  Google Scholar 

  • Keenan JM, Pins JJ, Frazel C, Moran A, Turnquist L. 2002. Oat ingestion reduces systolic and diastolic blood pressure in patients with mild or borderline hypertension: a pilot trial. J. Fam. Pract. 51: 369

    PubMed  Google Scholar 

  • Keying Q, Changzhong R, Zaigui L. 2009. An investigation on pretreatments for inactivation of lipase in naked oat kernels using microwave heating. J. Food Eng. 95: 280–284

    Article  CAS  Google Scholar 

  • Kouřimskáa L, Sabolováa M, Horčičkab P, Rysa S, Božikc M. 2018. Lipid content, fatty acid profile, and nutritional value of new oat cultivars. J Cereal Sci. 84: 44–48

    Article  CAS  Google Scholar 

  • Lee S, Yoon H, Lee MC, Oh S, Rauf M, Hur OS, et al. 2019. Comparison of the diversity of East Asian oat (Avena sativa L.) genetic resources by origin, considering major nutritional ingredients and agronomic traits. Korean J. Breed Sci. 51: 9–19

    Article  Google Scholar 

  • Lee YY, Ham H, Park HH, Kim YK, Lee MJ, Han Ok, et al. 2016. The physiochemical properties and dietary fiber contents in naked and hulled Korean oat cultivars. Korean J. Breed Sci. 48: 37–47

    Article  Google Scholar 

  • Leonova S. 2013. Lipids in seeds of oat (Avena spp.), a potential oil crop. Doctoral Thesis Swedish University of Agricultural Sciences Alnarp. Retrieved from https://pub.epsilon.slu.se/10427/1/leonova_s_130515.pdf

    Google Scholar 

  • Lim WJ, Liang YT, Seib PA, Rao CS. 1992. Isolation of oat starch from oat flour. Cereal Chem. 69: 233–236

    CAS  Google Scholar 

  • Maki KC, Galant R, Samuel P, Tesser J, Witchger MS, Ribaya-Mercado JD, et al. 2007. Effects of consuming foods containing oat β-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure Eur. J. Clin. Nutr. 61: 786–795

    Article  CAS  Google Scholar 

  • Manthey FA, Areland GA, Huseby DJ. 1999. Soluble and insoluble dietary fiber content and composition in oat. Cereal Chem. 76: 417–420

    Article  CAS  Google Scholar 

  • Martinez MF, Arelovish HM, Wehrhahne LN. 2010. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. Field Crops Res. 116: 92–100

    Article  Google Scholar 

  • McGraw-Hill C. 2008. Statistix ver. 8.1 (Analytical Software, Tallahassee, Florida). Maurice/Thomas text

    Google Scholar 

  • Miranda M, Vega-gálvez A, Martinez E, López J, Rodríguez MJ, Henríquez K, et al. 2012. Genetic diversity and comparison of physicochemical and nutritional characteristics of six quinoa (Chenopodium quinoa willd.) genotypes cultivated in Chile. Ciênc. Tecnol. Aliment. 32: 835–843

    Article  Google Scholar 

  • Morrison DE. 1976. Multivariate statistical methods, 2nd Ed., McGraw Hill Kogakusta, NewYork

    Google Scholar 

  • Mut Z, Akay H, Köse ODE. 2018. Grain yield, quality traits and grain yield stability of local oat cultivars. J. Soil Sci. Plant Nutr. 18: 269–281

    CAS  Google Scholar 

  • Newell MA. 2011. Oat (Avena sativa L.) quality improvement for increased β-glucan concentration. Graduate thesis. Iowa State University, Iowa

    Google Scholar 

  • National Institute of Crop Science. 2009. Manual of quality analysis for crop. National Institute of Crop Science, RDA, Jeonju

    Google Scholar 

  • Peterson DM, Wesenberg DM, Burrup DE, Erickson CA. 2005. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci. 45: 1249–1255

    Article  Google Scholar 

  • Peterson DM, Wood DF. 1997. Composition and structure of high-oil oat. J. Cereal Sci. 26: 121–128

    Article  CAS  Google Scholar 

  • Premkumar R, Nirmalakumari A, Anandakumar CR. 2017. Germplasm characterization for biochemical parameters in Oats (Avena sativa L.). Int. J. Pure App. Biosci. 5: 68–72

    Article  Google Scholar 

  • Prosky L. 1990. Collaborative study of method for soluble and insoluble dietary fiber. Adv. Exp. Med. Biol. 270: 193–203

    Article  CAS  PubMed  Google Scholar 

  • Queenan KM, Stewart ML, Smith KN, Thomas W, Fulcher RG, Slavin JL. 2007. Concentrated oat β-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutr. J. 6: 1–8

    Article  CAS  Google Scholar 

  • Rasane P, Jha A, Sabikhi L, Kumar A, Unnikrishnan VS. 2013. Nutritional advantages of oats and opportunities for its processing as value added foods - a review. J. Food Sci. Technol. 52: 662–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebello CJ, Chu YF, Johnson WD, Martin CK, Han H, Bordenave N, et al. 2014. The role of meal viscosity and oat β-glucan characteristics in human appetite control: a randomized crossover trial. Nutr. J. 13: 1–10

    Article  CAS  Google Scholar 

  • Redaelli R, Frate VD, Bellato S, Terracciano G, Ciccoritti R, Christoph CU, et al. 2013. Genetic and environmental variability in total and soluble β-glucan in European oat genotypes. J. Cereal Sci. 57: 193–199

    Article  CAS  Google Scholar 

  • Redaelli R, Scalfati G, Ciccoritti R, Cacciatori P, De Stefanis E, Sgrulletta D. 2015. Effects of genetic and agronomic factors on grain composition in oats. Cereal Res. Commun. 43: 144–154

    Article  Google Scholar 

  • Rezai A, Frey KJ. 1988. Variation in relation to geographical distribution of wild oats - seed traits. Euphytica 39:113–118

    Article  Google Scholar 

  • Rezai A, Frey KJ. 1990. Multivariate analysis of variation among wild oat accessions - seed traits. Euphytica 49: 111–119

    Article  Google Scholar 

  • RStudio Team. 2015. RStudio: integrated development for R. RStudio, Inc., Boston, MA. URL http://www.rstudio.com/

    Google Scholar 

  • Sang S, Chu YF. 2017. Whole grain oats, more than just a fiber: role of unique phytochemicals. Mol. Nutr. Food Res. 61: 1–12

    Google Scholar 

  • Sari N, Ünay A. 2017. β-Glucan content and relationships to some agronomical and quality characters in oat (Avena sativa L.) J. Field Crop Cent. Res. Inst. 26: 40–44

    Google Scholar 

  • Schipper H, Hammond EG, Frey KJ. 1991. Changes in fatty acid composition associated with recurrent selection for groat-oil content in oat. Euphytica 56: 81–88

    CAS  Google Scholar 

  • Shen XL, Zhao T, Zhou Y, Shi X, Zou Y, Zhao G. 2016. Effect of Oat β-glucan intake on glycaemic control and insulin sensitivity of diabetic patients: a meta-analysis of randomized controlled trials. Nutrients 8: 39

    Article  PubMed Central  CAS  Google Scholar 

  • Silveira SFS, Oliveira DCS, Wolter DD, Luche HS, de Oliveira VF, Figueiredo R, et al. 2016. Performance of white oat cultivars for grain chemical content. Can. J. Plant Sci. 96: 530–538

    Article  CAS  Google Scholar 

  • Sterna V, Zute S, Brunava L. 2016. Oat grain composition and its nutrition benefice. Agric. Agric. Sci. Proc. 8: 252–256

    Google Scholar 

  • Sterna V, Zute S, Vicupe Z. 2018. Variation in β-glucan, protein and fat concentration of oats created in Latvia. Proc. Latv. Acad. Sci. B Nat. Axact. Appl. Sci. 72: 71–74

    CAS  Google Scholar 

  • Sunilkumar BA, Tareke E. 2017. Identification of discrepancies in grain quality and grain protein composition through avenin proteins of oat after an effort to increase protein content. Agr. Food Secur. 5: 1–6

    Google Scholar 

  • Thongoun P, Pavadhgul P, Bamrungpert A, Satitviawaee P, Harjani Y, Kuriluch A. 2013. Effect of oat consumption on lipid profiles in hypercholesterolemic adults. J. M. Assoc. Thai. 96: S25–32

    Google Scholar 

  • Tiwari U, Cummins E. 2009. Simulation of the factors affecting β-glucan levels during the cultivation of oats. J. Cereal Sci. 50: 175–183

    Article  CAS  Google Scholar 

  • United States Department of Agriculture. 2017. World agricultural production. Online available at http://usda.mannlib.cornell.edu/usda/fas/worldag-production/2010s/2017/worldag-production-09-12-2017.pdf

    Google Scholar 

  • Wang Q, Ellis PR. 2014. Oat β-glucan: Physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties. British J. Nutr. 112: S4–S13

    Article  CAS  Google Scholar 

  • Webster FH. 2002. Whole-grain oats and oat products, In L Marquart, JL Slavin, RG Fulcher, eds, Whole-grain foods in health and disease. AACC: St. Paul, MN, USA pp 83–123

    Google Scholar 

  • Winkler LR, Michael-Bonman J, Chao S, Admassu-Yimer B, Bockelman H, Esvelt Klos K. 2016. Population structure and genotype-phenotype associations in a collection of oat landraces and historic cultivars. Front. Plant Sci. 7: 1–15

    Google Scholar 

  • Zhang M, Bai X, Zhang Z. 2011. Extrusion process improves the functionality of soluble dietary fiber in oat bran. J. Cereal Sci. 54: 98–103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Program for Agricultural Science & Technology Development (Project No. 012478) of the National Institute of Agricultural Sciences, Rural Development Administration (Jeonju, Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Mi Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauf, M., Yoon, H., Lee, S. et al. Evaluation of Major Dietary Ingredients in Diverse Oats (Avena sativa L.) Germplasm. J. Crop Sci. Biotechnol. 22, 495–507 (2019). https://doi.org/10.1007/s12892-019-0274-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-019-0274-0

Key words

Navigation