Skip to main content
Log in

Functional diversity of RING E3 ligases of major cereal crops in response to abiotic stresses

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Abiotic stresses significantly reduce the grain yield and productivity of cereal crops, especially rice, and this may affect food security in the future. Different abiotic stress adaptation pathways have been investigated and depicted in plants. Among these, the ubiquitin-proteasome system (UPS) has been studied as a key mechanism to understand the protein regulation pathways that enhance the adaptation and survival of plants under various environmental stresses such as drought, salinity, cold, and toxic metalloid exposure. RING E3 ligases constitute a highly diverse and important enzyme group that acts within the 26S UPS, and it also plays a crucial role as a central regulator of plant physiological and cellular processes. This review aimed to highlight recent findings and discoveries regarding the different stress-induced RING E3 ligase genes of major cereal crops and their functions via ubiquitination pathways under different environmental stress conditions. Such genes regulate different physiological responses including protein stabilization, cell membrane integrity, regulation of stomatal opening, and the maintenance of meristematic cells, and they also regulate reactive oxygen species and heavy metal levels via ubiquitination in plants. Hence, the ubiquitination process is considered a potential target for the development of abiotic stress-tolerant crops, and it might be used as an excellent mechanism for stress-tolerant crop improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Salhi M, Ghannam MM, Al-Ayed MS, El-Kameesy SU, Roshdy S. 2004. Effect of gamma-irradiation on biophysical and morphological properties of corn. Nahrung 48: 95–98

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Kim SK, Cho SK, Kang BG, Kim WT. 2011. Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci. 180: 775–82

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E. 2000. Responses to abiotic stresses, in Biochemistry and Molecular Biology of Plants, eds, BB Buchanan, W Gruissem, RL Jones. Rockville, American Society of Plant Physiologists, pp 1158–1249

    Google Scholar 

  • Chasapis CT, Spyroulias GA. 2009. RING finger E(3) ubiquitin ligases: structure and drug discovery. Curr. Pharm. Des. 15: 3716–3731

    Article  CAS  PubMed  Google Scholar 

  • Conde A, Chaves MM, Geros H. 2011. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol. 52: 1583–1602

    Article  CAS  PubMed  Google Scholar 

  • Deshaies RJ, Joazeiro CA. 2009. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78: 399–434

    Article  CAS  PubMed  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. 2006. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. USA, 103: 8281–8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang H, Meng Q, Xu J, Tang H, Tang S, Zhang H, Huang J. 2015. Knock down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Mol. Biol. 87: 441–58

    Article  CAS  PubMed  Google Scholar 

  • Flick K, Kaiser P. 2012. Protein degradation and the stress response. Semin. Cell Develop. Biol. 23: 515–22

    Article  CAS  Google Scholar 

  • Freemont PS, Hanson IM, Trowsdale JA. 1991. Novel cysteinerich sequence motif. Cell 64: 483–484

    Article  CAS  PubMed  Google Scholar 

  • Gao T, Wu Y, Zhang Y. 2011. OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol. Biol. 76: 145–56

    Article  CAS  PubMed  Google Scholar 

  • Goldstein G, Scheid M, Hammerling U, Boyse EA, Schlesinger DH, Niall HD. 1975. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Nat. Acad. Sci. USA 73: 11–15

    Article  Google Scholar 

  • Grattan SR, Zeng L, Shannon MC, Roberts SR. 2002. Rice is more sensitive to salinity than previously thought. Calif. Agric. 56: 189–195

    Article  Google Scholar 

  • Guerra D, Mastrangelo AM, Lopez-Torrejon G, Marzin S, Schweizer P, Stanca AM, Del Pozo JC, Cattivelli L, Mazzucoteli E. 2012. Identification of a protein network interacting with TdRF1, a wheat RING ubiquitin ligase with a protective role against cellular dehydration. Plant Physiol. 158: 777–789

    Article  CAS  PubMed  Google Scholar 

  • Hwang SG, Chapagain S, Han AR, Park, YC, Park, HM, Kim, YH, Jang, CS. 2017. Molecular characterization of rice arsenic-induced RING Finger E3 ligase 2 (OsAIR2) and its heterogeneous overexpression in Arabidopsis thalaiana. Physiol. Plarumant. 161: 372–384

    Article  CAS  Google Scholar 

  • Hwang SG, Kim JJ, Lim SD, Park YC, Moon JC, Jang CS. 2016b. Molecular dissection of Oryza sativa salt-induced RING finger protein 1 (OsSIRP1): possible involvement in the sensitivity response to salinity stress. Physiol. Plant. 158: 168–179

    Article  CAS  PubMed  Google Scholar 

  • Hwang SG, Park HM, Han AR, Jang CS. 2016a. Molecular characterization of Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1): Expression patterns, localization, functional interaction, and heterogeneous overexpression. J. Plant Physiol. 191: 140–148

    Article  CAS  PubMed  Google Scholar 

  • Jung CG, Lim SD, Hwang S, Jang CS. 2012. Molecular characterization and concerted evolution of two genes encoding RING-C2 type proteins in rice. Gene 505: 9–18

    Article  CAS  PubMed  Google Scholar 

  • Koiwai H, Tagiri A, Katoh S, Kathoh E, Ichikawa H, Minami E, Nishizawa Y. 2007. Ring–H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. Plant J. 51: 92–104

    Article  CAS  PubMed  Google Scholar 

  • Kosarev P, Mayer KF, Hardtke CS. 2002. Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biol. 3: Research0016

    Google Scholar 

  • Kovacs E, Keresztes A. 2002. Effect of gamma and UV-B/C radiation on plant cells. Micron 33: 199–210

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Hu Q, Zhou M, Vandenbrink J, Li D, Menchyk N, Reighard S, Norris A, Liu H, Sun D, et al. 2013. Heterologous expression of OsSIZ1, rice SUMO E3 ligase, enhances broad abiotic stress tolerance in transgenic creeping bentgrass. Plant Biotech. J. 11: 432–45

    Article  CAS  Google Scholar 

  • Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS. 2013. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J. Exp. Bot. 60: 2899–914

    Article  Google Scholar 

  • Lim SD, Hwang JG, Han AR, Park YC, Lee C, Ok YS, Jang CS. 2014a. Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes. Plant Mol. Biol. 85: 365–379

    Article  CAS  PubMed  Google Scholar 

  • Lim SD, Jung CG, Park YC, Lee SC, Lim CW, Kim DS, Jang CS. 2015. Molecular Dissection of a rice microtubule-associated RING finger Protein and its potential role in salt tolerance in Arabidopsis. Mol. Biol. 89: 365–384

    Article  CAS  Google Scholar 

  • Lim SD, Lee C, Jang CS. 2014b. The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis. Plant Cell Environ. 37: 1097–113

    Article  CAS  PubMed  Google Scholar 

  • Lim SD, Yim WC, Moon JC, Kim DS, Lee BM, Jang CS. 2010. A gene family encoding RING finger proteins in rice: their expansion, expression diversity, and co-expressed genes. Plant Mol. Biol. 72: 369–380

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Hsu Y, Cheng Y, Yen HC, Wu YP, Wang CS, Lai CC. 2012. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Commun. Mass Spectrom. 26: 1649–60

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang H, Yang Y, Li G, Yang Y, Wang X, Basnayake BM, Li D, Song F. 2008. Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol. Biol. 68: 17–30

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xia Z, Wang M, Yang T, Wu J. 2013. Overexpression of maize E3 ubiquitin ligase gene enhances drought tolerance through regulating stomatal aperture and antioxidant system in transgenic tobacco. Plant Physiol. Biochem. 73: 114–120

    Article  CAS  PubMed  Google Scholar 

  • Magadum S, Benerjee U, Murugan P, Gangapur D, Ravikesavan R. 2013, Gene duplication as a major force in evolution J. Genet. 92: 155–161

    Article  PubMed  Google Scholar 

  • Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, et al. 2011. The SINA E3 Ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol. 157: 242–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park GG, Park JJ, Yoon J, Yu SN, Na G. 2010. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol. Biol. 74: 467–78

    Article  CAS  PubMed  Google Scholar 

  • Park JJ, Yi J, Yoon J, Cho LH, Ping J, Jeong HJ, Cho SK, Kim WT, An G. 2011. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J. 65: 194–205

    Article  CAS  PubMed  Google Scholar 

  • Park YC, Kim JJ, Kim DS, Jang CS. 2015. Rice RING E3 ligase may negatively regulate gamma-ray response to mediate the degradation of photosynthesis-related proteins. Planta 241: 1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Franke WW, Kleinschmidt JA. 1994. Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and cytoplasm. J. Biol. Chem. 269: 7709–7718

    CAS  PubMed  Google Scholar 

  • Pickart C.M. Back to the future with ubiquitin. 2004. Cell 116: 181–190

  • Shahbaz M, Ashraf M. 2013. Improving salinity tolerance in cereals. Crit. Rev. Plant Sci. 32: 237–249

    Article  Google Scholar 

  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physiocochemical changes in plants. Rev. Environ. Contam. Toxicol. 232: 1–44

    CAS  PubMed  Google Scholar 

  • Stone SL, Hauksdottir H, Troy A, Troy A, Herschlrb J, Kraft E, Callis J. 2005. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137: 13–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takatsuji H. 1998. Zinc-finger transcription factors in plants. Cell Mol. Life Sci. 54: 582–596

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Fooladb MR. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61: 199–223

    Article  Google Scholar 

  • Wery J, Silim S, Knights EJ, Malhotra RS, Cousin R. 1994. Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73: 73–83

    Article  Google Scholar 

  • Wi SG, Chung BY, Kim JH, Baek MH, Yang DH, Lee JW, Kim JS. 2005. Unstructural changes of cell organells in Arabidopsis stems after gamma irradiation. J. Plant Biol. 48: 195–200

    Article  Google Scholar 

  • Xia Z, Liu Q, Wu J, Ding J. 2012. ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize. Gene 495: 146–153

    Article  CAS  PubMed  Google Scholar 

  • Yim WC, Lee B-M, Jang CS. 2009. Expression diversity and evolutionary dynamics of rice duplicate genes. Mol. Genet. Genomics 281: 483–493

    Article  CAS  PubMed  Google Scholar 

  • Zeng S, Fou P, Ziao F, Li Y. 2014. Overexpressing a novel RING–H2 finger protein gene, OsRHP1, enhances drought and salt tolerance in rice (Oryza sativa L.). J. Plant Biol. 57: 357–365

    Article  CAS  Google Scholar 

  • Zhang G, Zhang M, Zhao Z, Ren Y, LI Q, Wang W. 2017. Wheat TaPUB1 modulates plant drought stress resistance by improving antioxidant capability. Sci. Rep. 7: 7549

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Zhang GQ, Kang HH, Zhou SM, Wang W. 2017. TaPUB1, a putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana. Plant Cell Physiol. 58: 1673–1688

    Article  PubMed  Google Scholar 

  • Zhu JK. 2016. Abiotic stress signaling and response in plants. Cell 167: 313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Seong Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapagain, S., Park, Y.C. & Jang, C.S. Functional diversity of RING E3 ligases of major cereal crops in response to abiotic stresses. J. Crop Sci. Biotechnol. 20, 351–357 (2017). https://doi.org/10.1007/s12892-017-0104-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0104-0

Keywords

Navigation