Skip to main content
Log in

Efficient Micropropagation Protocol for Jatropha Curcas Using Liquid Culture Medium

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Although several studies have been made on the micropropagation of Jatropha curcas using agar base mediums, none of them have been by using liquid medium systems. The effects of explant type and temporary immersion system (test tube, jar with filter paper boat, and growtek bioreactor) on the micropropagation of J. curcas were studied. The explant type influenced shoot quality, multiplication coefficient (MC), and rooting. Leaf explant produced more and longer shoots than nodal explant. Use of filter paper (FB) boat prevented hyperhydricity and allowed proliferation of nodal explants cultured in liquid MS (Murashige and Skoog) medium supplemented 6-benzylaminopurine (BAP) and Kinetin (KN). The best shoot bud induction (92.1±3.1%) was achieved in liquid MS medium supplemented with 2.0 mg/L KN. Leaf regeneration efficiency was compared in growtek bioreactor and in jar containing liquid MS medium supplemented with 0.5 mg/L Thidiazuron (TDZ). The best shoot bud regeneration (78.7±2.1%) was obtained in growtek bioreactor. Shoot buds achieved from nodal segment and leaf were subcultured on filter paper boats in jar and bioreactor containing liquid MS medium supplemented with BAP, Indole butyric acid (IBA), Indole-3-acetic acid (IAA), and KN. Best shoot proliferation and elongation was obtained in filter paper boats containing liquid MS medium supplemented with 1.5 mg/L BAP, 0.5 mg/L IAA, and 0.2 mg/L KN. The number of multiple shoot buds was higher in leaf explants as compared to nodal explants and the highest number of multiple shoot buds was recorded from leaf explants. Up to 76.4% rooting efficiency was obtained when the shoots were ex vitro rooted. The generated plants well established in the nursery and grew normally in outdoor conditions. The protocol has good potential for application in large-scale propagation of J. curcas using liquid medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken-Christie J. 1991. Automation In: PC Debergh, RH Zimmerman, eds., Micropropagation. Kluwer, Dordrecht, pp 342–354

  • Aitken-Christie J, Kozai T, Takayama S. 1995. Automation in plant tissue culture: general introduction and overview. In: T Kozai, MAL Smith, J Aitken-Christie, eds., Automation and environmental control in plant tissue culture. Kluwer, Boston, pp 1–18

  • Ascough GD, Fennell CW. 2004. The regulation of plant growth and development in liquid culture. South Afr. J. Bot. 70, 181–190

    Article  CAS  Google Scholar 

  • Berthouly M, Etienne H. 2005. Temporary immersion system: a new concept for use liquid medium in mass propagation. In: AK Hvoslef-Eide, W Preil, eds., Liquid Culture Systems for In Vitro Plant Propagation. Springer, Dordrecht pp 165–195

    Google Scholar 

  • Cai Lin, Lin Fu, Ji L. 2011. Regeneration of Jatropha curcas through efficient somatic embryogenesis and suspension culture. GM Crops 2: 110–117

    Article  PubMed  Google Scholar 

  • De Klerk, Ter Brugge J. 2011. Micropropagation of dahlia in static liquid medium using slow-release tools of medium ingredients. Sci. Hort. 127: 542–547

    Article  Google Scholar 

  • Demissie AG, Lele SS. 2013. Determination of polyunsaturated fatty acids in Jatropha curcas somatic embryos and the effect of abiotic sources. Biol. Sci. Pharm. Res. 1: 8–15

    Google Scholar 

  • Deore AC, Johnson TS. 2008. High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L. an important biodiesel plant. Plant Biotechnol. Rep. 2: 10–15

    Google Scholar 

  • Etienne H, Dechamp E, Barry-Etienne D, Bertrand B. 2006. Bioreactors in coffee micropropagation. Brazil J. Plant Physiol. 18: 45–54

    Article  CAS  Google Scholar 

  • Guan H, De Klerk GJ. 2000. Stem segments of apple microcuttings take up auxin predominantly via the cut surface and not via the epidermal surface. Sci. Hort. 86: 23–32

    Article  CAS  Google Scholar 

  • Ivanova M, Van Staden J. 2011. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe olyphylla. Plant Cell Tiss. Organ Cult. 104: 13–21

    Article  CAS  Google Scholar 

  • Khemkladngoen N, Cartagena J, Shibagaki N, Fukui K. 2011. Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing plant Jatropha curcas L. J. Biosci. Bioeng. 111: 67–70

    Article  CAS  PubMed  Google Scholar 

  • Khurana-Kaul V, Kachhwaha S, Kothari SL. 2010. Direct shoot regeneration from leaf explants of Jatropha curcas in response to thidiazuron and high copper contents in the medium. Biol. Plant. 54: 369–372

    Article  CAS  Google Scholar 

  • Kumar N, Reddy MP. 2010. Plant regeneration through the direct induction of shoot buds from petiole explants of Jatropha curcas: a biofuel plant. Annu. Appl. Biol. 156: 367–375

    Article  CAS  Google Scholar 

  • Kumar N, Reddy MP. 2012. Thidiazuron (TDZ) induced plant regeneration from cotyledonary petiole explants of elite genotypes of Jatropha curcas: a candidate biodiesel plant. Ind. Crops Prod. 39: 62–68

    Article  CAS  Google Scholar 

  • Kumar N, Vijayanand KG, Reddy MP. 2011. In vitro regeneration from petiole explants of non-toxic Jatropha curcas. Ind. Crops Prod. 33: 146–151

    Article  CAS  Google Scholar 

  • Loberant B, Altman A. 2010. Micropropagation of plants. In: MC Flickinger, ed., Encyclopedia of Industrial Biotechnology: Biprocess, Biosepar Cell Tech Wiley, New York, pp 3499–3515

  • Mujib A, Muzamil A, Tasiu I, Dipti H. 2014. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) -A comparative study. Saudi J. Biol. Sci. 21: 442–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Pineda FS, Baz-Rodríguez SA, Handler R, Sacramento-Rivero JC. 2016. Advances on the processing of Jatropha curcas towards a whole-crop biorefinery. Renew Sustain Energy Rev. 54: 247–269

    Article  CAS  Google Scholar 

  • Niemenak N, Saare-Surminski K, Rohsius C, Ndoumou DO, Lieberei R. 2008. Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep. 27: 667–676

    CAS  PubMed  Google Scholar 

  • Openshaw K. 2000. A review of Jatropha curcas: an oil plant of unfulfilled promise Biomass Bioenergy 19: 1–15

    Google Scholar 

  • Paek KY, Chakrabarty D, Hahn EJ. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss. Organ Cult. 81: 287–300

    Article  Google Scholar 

  • Paek KY, Hahn EJ, Son SH. 2001. Application of bioreactors of large scale micropropagation systems of plants. In Vitro Cell. Dev. Biol. Plant 37: 149–157

    Article  CAS  Google Scholar 

  • Piatczak E, Wielanek M, Wysokinska H. 2005. Liquid culture system for shoot multiplication and secoiridoid production in micropropagated plants of Centaurium erythraea Rafn. Plant Sci. 168: 431–437

    Article  CAS  Google Scholar 

  • Preil W. 2005. General introduction: a personal reflection on the use of liquid media for in vitro culture. In: W Preil, AK Hvoslef-Eide, eds., Liquid culture systems for in vitro plant propagation. Springer, Berlin, pp 1–18

  • Quiala E, Barbon R, Jime´nez E, de Feria M, Cha´vez M, Capote A, Perez N. 2006. Biomass production of Cymbopogon citratus (DC) Stapf., a medicinal plant, in temporary immersion systems. In vitro Cell. Dev. Biol.-Plant 42: 98–300

    Article  Google Scholar 

  • Quiala E, Canal MJ, Meijon M, Rodriguez R, Chavez M, Valledor L, Feria M, Barbon A 2012. Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tiss. Organ Cult. 109: 223–234

    Article  CAS  Google Scholar 

  • Salaj T, Blehová A, Salaj J 2007. Embryogenic suspension cultures of Pinus nigra Arn.: growth parameters and maturation ability. Acta Physiol. Plant. 29: 225–231

    Article  CAS  Google Scholar 

  • Schönherr J. 2006. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J. Exp. Bot. 57: 2471–2491

    Article  PubMed  Google Scholar 

  • Shaik S, Dewir YH, Singh N, Nicholas A 2010. Micropropagation and bioreactor studies of the medicinally important plant Lessertia (Sutherlandia) frutescens L. South Afr. J. Bot. 76: 180–186

    Article  CAS  Google Scholar 

  • Singh A, Jani K, Sagervanshi A, Agrawal PK. 2014. High frequency regeneration by Abscisic Acid (ABA) from petiole callus of Jatropha curca.s In Vitro Cell. Dev. Biol. Plant 50: 638–645

    Article  CAS  Google Scholar 

  • Singh B, Yadav K, Lal M. 2001. An efficient protocol for micropropagation of sugarcane using shoot tip explants. Sugar Technol. 3: 113–116

    Article  Google Scholar 

  • Snyman SJ, Nkwanyana PD, Watt MP. 2011. Alleviation of hyperhydricity of sugarcane plantlets produced in RITA (R) vessels and genotypic and phenotypic characterization of acclimated plants. South Afr. J. 77: 685–692

    Article  Google Scholar 

  • Soomro R, Memon R. 2007. Establishment of callus and suspension culture in J. curcas. Pak. J. Bot. 39: 2431–2441

    Google Scholar 

  • Veltcheva MR, Svetleva DL. 2005. In vitro regeneration of Phaseolus vulgaris L. via organogenesis from petiole explants. J. Central Eur. Agric. 6: 53–58

    Google Scholar 

  • Wenck AR, Quinn M, Whetten, Pullman G, Sederoff R. 1999. Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39: 407–416

    Article  CAS  PubMed  Google Scholar 

  • Ziv M. 2010. Bioreactor technology for plant micropropagation. In: J Janick, ed, Horticulture Reviews. Wiley, New York, pp 1–30

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneesha Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A. Efficient Micropropagation Protocol for Jatropha Curcas Using Liquid Culture Medium. J. Crop Sci. Biotechnol. 21, 89–94 (2018). https://doi.org/10.1007/s12892-017-0004-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0004-0

Key words

Navigation