Skip to main content

Advertisement

Log in

Parentage assignment in the critically endangered European sturgeon (Acipenser sturio) based on a novel microsatellite multiplex assay: a valuable resource for restocking, monitoring and conservation programs

  • Methods and Resources Article
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

The only remaining population of the critically endangered European sturgeon, Acipenser sturio, is located in the Gironde basin (France). A restoration program initiated 20 years ago has allowed more than one and a half million individuals to be stocked. Effective monitoring of this population is a key prerequisite in ensuring the sustainability of this species in the wild. We report the development of a novel microsatellite multiplex assay for genetic monitoring of A. sturio. Diversity of a set of 18 loci was low to moderate, with a number of alleles and observed heterozygosity ranging from 4 to 7 and 0.33 to 0.74 respectively, depending on markers. A set of captive-born progeny of known relatives (n = 72) was used to examine the efficiency of this assay in assigning parentage to offspring. Three different programs were used. Correct assignment success was generally high (above 90 %), but differed between programs. Parentage analysis of individuals captured in the Gironde estuary (n = 193) demonstrated that most offspring (91.2 %) are unambiguously allocated to parent pairs from the broodstock. Our research provides an efficient and accurate method for the genetic monitoring of the restocking program, but also for others aspects of conservation, including genetic diversity evaluation, effective population size estimation, and inbreeding assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul-Muneer PM (2014) Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet Res Int 2014:691–759

    Google Scholar 

  • Acolas ML, Roqueplo C, Rouleau E, Rochard E (2011) Chapter 29—Post release monitoring techniques. In: Williot P, Rochard E, Desse-Berset N, Kirschbaum F, Gessner J (eds) Biology and conservation of the Atlantic European sturgeon Acipenser sturio L, 1758. Springer, Berlin, pp 407–416

    Chapter  Google Scholar 

  • Andreou D, Vacquie-Garcia J, Cucherousset J, Blanchet S, Gozlan RE, Loot G (2012) Individual genetic tagging for teleosts: an empirical validation and a guideline for ecologists. J Fish Biol 80:181–194

    Article  CAS  PubMed  Google Scholar 

  • Berrebi P, Cherbonnel C (2011) Analyse génotypique des géniteurs d’esturgeons Acipenser Sturio, en vue de croisements garantissant le maximum de diversité génétique aux descendants. Unpublished report

  • Birstein VJ (1993) Sturgeons and paddlefishes: threatened fishes in need of conservation. Conserv Biol 7(4):774–787

    Article  Google Scholar 

  • Börk K, Drauch A, Israel JA, Pedroia J, Rodzen J, May B (2007) Development of new microsatellite primers for green and white sturgeon. Conserv Genet 9:973–979

    Article  Google Scholar 

  • Borrell YJ, Carleos CE, Asturiano JF, Bernardo D, Vázquez E, Corral N, Sánchez JA, Blanco G (2007) Use of microsatellites and a combinatorial optimization approach in the acquisition of gilthead seabream (Sparus aurata L.) broodstocks for hatcheries. Aquaculture 269:200–210

    Article  CAS  Google Scholar 

  • Bravington MV, Ward RD (2004) Microsatellite DNA markers: evaluating their potential for estimating the proportion of hatchery-reared offspring in a stock enhancement programme. Mol Ecol 13:1287–1297

    Article  CAS  PubMed  Google Scholar 

  • Carmona R, Domezain A, Garcia-Gallego M, Hernando JA, Rodriguez F, Ruiz-Rejón M (2011) Biology, conservation and sustainable development of Sturgeons. Springer, Berlin

    Google Scholar 

  • Chassaing O (2010) Organisation génétique des populations d’esturgeon Européen, Acipenser sturio: passé, présent, futur. Ph.D. dissertation, University of Montpellier, p 491. Universite Montpellier II

  • Chassaing O, Hanni C, Berrebi P (2011) Distinguishing species of European sturgeons Acipenser spp. using microsatellite allele sequences. J Fish Biol 78:208–226

    Article  CAS  PubMed  Google Scholar 

  • Chassaing O, Desse-Berset N, Hänni C, Hugues S, Berrebi P (2016) Phylogeography of the European sturgeon (Acipenser sturio): a critically endangered species. Mol Phylogenet Evol 94:346–357

    Article  PubMed  Google Scholar 

  • Cooper AM, Miller LM, Kapuscinski AR (2009) Conservation of population structure and genetic diversity under captive breeding of remnant coaster brook trout (Salvelinus fontinalis) populations. Conserv Genet 11:1087–1093

    Article  Google Scholar 

  • DeHaan PW, Jordan GR, Ardren WR (2007) Use of genetic tags to identify captive-bred pallid sturgeon (Scaphirhynchus albus) in the wild: improving abundance estimates for an endangered species. Conserv Genet 9:691–697

    Article  Google Scholar 

  • Duchesne P, Godbout MH, Bernatchez L (2002) PAPA (package for the analysis of parental allocation): a computer program for simulated and real parental allocation. Mol Ecol Notes 2:191–193

    Article  CAS  Google Scholar 

  • Duchesne P, Castric T, Bernatchez L (2005) PASOS (parental allocation of singles in open systems): a computer program for individual parental allocation with missing parents. Mol Ecol Notes 5:701–704

    Article  CAS  Google Scholar 

  • Dudu A, Suciu R, Paraschiv M, Georgescu SE, Costache M, Berrebi P (2011) Nuclear markers of Danube Sturgeons hybridization. Int J Mol Sci 12:6796–6809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldheim KA, Gruber SH, de Marignac JRC, Ashley MV (2002) Genetic tagging to determine passive integrated transponder tag loss in lemon sharks. J Fish Biol 61:1309–1313

    Article  CAS  Google Scholar 

  • Fopp-Bayat D, Woznicki P (2008) Test of Mendelian segregation among 10 microsatellite loci in the fourth generation of bester (Huso huso L. × Acipenser ruthenus L.). Aquac Res 39:1377–1382

    Article  Google Scholar 

  • Forlani A, Fontana F, Congiu L (2007) Isolation of microsatellite loci from the endemic and endangered Adriatic sturgeon (Acipenser naccarii). Conserv Genet 9:461–463

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, New York

    Book  Google Scholar 

  • Georgescu SEBA, Florescu I, Popa OG, Dudu ACM (2014) Microsatellite variation in Russian Sturgeon (Acipenser gueldenstaedtii) from aquaculture. Anim Sci Biotechnol 47:73–76

    Google Scholar 

  • Hansen M, Kenchington E, Nielsen E (2001) Assigning individual fish to populations using microsatellite DNA markers. Fish Fish 2:93–112

    Article  Google Scholar 

  • Harrison HB, Saenz-Agudelo P, Planes S, Jones GP, Berumen ML (2013) Relative accuracy of three common methods of parentage analysis in natural populations. Mol Ecol 22:1158–1170

    Article  PubMed  Google Scholar 

  • Henderson-Arzapalo A, King TL (2002) Novel microsatellite markers for Atlantic sturgeon (Acipenser oxyrinchus) population delineation and broodstock management. Mol Ecol Notes 2:437–439

    Article  CAS  Google Scholar 

  • Hoskin ML, Hutchison MJ, Barnes AC, Ovenden JR, Pope LC (2015) Parental contribution to progeny during experimental spawning of jungle perch, Kuhlia rupestris. Mar Freshw Res 66:375

    Article  Google Scholar 

  • IUCN (2015) The IUCN red list of threatened species. Version 2015-4. www.iucnredlist.org. Accessed 20 Jan 2016

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • King TL, Lubinski BA, Spidle AP (2001) Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv Genet 2:103–119

    Article  CAS  Google Scholar 

  • Kirschbaum F, Williot P, Fredrich F, Tiedemann R, Gessner J (2011) Restoration of the European Sturgeon Acipenser sturio in Germany. In: Williot P, Rochard E, Desse-Berset N, Kirschbaum F, Gessner J (eds) Biology and conservation of the Atlantic European sturgeon Acipenser sturio L, 1758. Springer, Berlin, pp 309–333

    Chapter  Google Scholar 

  • Koljonen M, Tahtinen J, Saissa M, Koskiniemi J (2002) Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programs and the geographic distribution of microsatellite variation. Aquaculture 212:69–92

    Article  CAS  Google Scholar 

  • Kozfkay CC, Campbell MR, Heindel JA, Baker DJ, Kline P, Powell MS, Flagg T (2007) A genetic evaluation of relatedness for broodstock management of captive, endangered Snake River sockeye salmon, Oncorhynchus nerka. Conserv Genet 9:1421–1430

    Article  Google Scholar 

  • Liu ZJ, Cordes JF (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1–37

    Article  CAS  Google Scholar 

  • Liu Y, Li C, Cheng L, Lu CY, Sun XW (2014) Development and characterization of new microsatellite markers for Amur sturgeon (Acipenser schrenckii). Conserv Genet Res 6:65–67

    Article  Google Scholar 

  • Lochet A, Lambert P, Lepage M, Rochard E (2004) Growth comparison between wild and hatchery-reared juvenile European sturgeons Acipenser sturio (Acipenseridae) during their stay in the Gironde estuary (France). Cybium 28:91–98

    Google Scholar 

  • Lochet A, Jatteau P, Gessner J (2011) Detection of chemical marks for stocking purposes in sturgeon species. J Appl Ichthyol 27:444–449

    Article  Google Scholar 

  • Ludwig A (2005) A sturgeon view on conservation genetics. Eur J Wildl Res 52:3–8

    Article  Google Scholar 

  • Ludwig A, Williot P, Kirschbaum F, Lieckfeld D (2004) Genetic Variability of the Gironde population of Acipenser sturio. Bundesamt für Naturschutz 101:54–72

    Google Scholar 

  • Lukacs P, Burnham K (2005) Review of capture-recapture methods applicable to noninvasive genetic sampling. Mol Ecol 14:3909–3919

    Article  PubMed  Google Scholar 

  • Machado-Schiaffino G, Dopico E, Garcia-Vazquez E (2007) Genetic variation losses in Atlantic salmon stocks created for supportive breeding. Aquaculture 264:59–65

    Article  Google Scholar 

  • Marshall T, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • May B, Krueger CC, Kincaid HL (1997) Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci 54:1542–1547

    Article  CAS  Google Scholar 

  • McLean JE, Seamons TR, Dauer MB, Bentzen P, Quinn TP (2007) Variation in reproductive success and effective number of breeders in a hatchery population of steelhead trout (Oncorhynchus mykiss): examination by microsatellite-based parentage analysis. Conserv Genet 9:295–304

    Article  Google Scholar 

  • McQuown EC, Sloss BL, Sheehan RJ, Rodzen J, Tranah GJ, May B (2000) Microsatellite analysis of genetic variation in sturgeon: new primer sequences for Scaphirhynchus and Acipenser. Trans Am Fish Soc 129:1380–1388

    Article  CAS  Google Scholar 

  • Meraner A, Cornetti L, Gandolfi A (2014) Defining conservation units in a stocking-induced genetic melting pot: unraveling native and multiple exotic genetic imprints of recent and historical secondary contact in Adriatic grayling. Ecol Evol 4:1313–1327

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghim M, Heist EJ, Tan SG, Pourkazemi M, Siraj SS, Panandam JM, Pourgholam R, Kor D, Laloei F, Taghavi MJ (2012) Isolation and characterization of microsatellite loci in the Persian sturgeon (Acipenser persicus, Borodine, 1897) and cross-species amplification in four commercial sturgeons from the Caspian Sea. Iran J Fish Sci 11:548–558

    Google Scholar 

  • Moghim M, Javanmard A, Pourkazemi M, Tan SG, Panandam JM, Kor D, Laloei F (2013) Application of microsatellite markers for genetic conservation and management of Persian sturgeon (Acipenser persicus, Borodin, 1897) in the Caspian Sea. J Appl Ichthyol 29:696–703

    Article  Google Scholar 

  • Morvezen R, Cornette F, Charrier G, Guinand B, Lapegue S, Boudry P, Laroche J (2013) Multiplex PCR sets of novel microsatellite loci for the great scallop Pecten maximus and their application in parentage assignment. Aquat Living Resour EDP Sci 26(3):207–213

    Article  CAS  Google Scholar 

  • Neff BD, Fu P, Gross MR (2000) Microsatellite multiplexing in fish. Trans Am Fish Soc 129:584–593

    Article  CAS  Google Scholar 

  • Nielsen R, Mattila D, Clapham P, Palsboll P (2001) Statistical approaches to paternity analysis in natural populations and applications to the North Atlantic humpback whale. Genetics 157:1673–1682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen RK, Pertoldi C, Loeschcke V (2007) Genetic evaluation of the captive breeding program of the Persian wild ass. J Zool 272:349–357

    Article  Google Scholar 

  • O’Reilly PT, Kozfkay CC (2014) Use of microsatellite data and pedigree information in the genetic management of two long-term salmon conservation programs. Rev Fish Biol Fish 24:819–848

    Article  Google Scholar 

  • Panagiotopoulou H, Popovic D, Zalewska K, Weglenski P, Stankovic A (2014) Microsatellite multiplex assay for the analysis of Atlantic sturgeon populations. J Appl Genet. doi:10.1007/s13353-014-0216-y

    PubMed  PubMed Central  Google Scholar 

  • Perrier C, Bagliniere JL, Evanno G (2013a) Understanding admixture patterns in supplemented populations: a case study combining molecular analyses and temporally explicit simulations in Atlantic salmon. Evol Appl 6:218–230

    Article  PubMed  Google Scholar 

  • Perrier C, Guyomard R, Bagliniere JL, Nikolic N, Evanno G (2013b) Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. Ecol Evol 3:2334–2349

    Article  PubMed  PubMed Central  Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859

    Article  CAS  PubMed  Google Scholar 

  • Poteaux C, Bonhomme P, Berrebi P (1999) Microsatellite polymorphism and genetic impact of restocking in Mediterranean brown trout (Salmo trutta L.). Heredity 82:645–653

    Article  PubMed  Google Scholar 

  • Rajkov J, Shao Z, Berrebi P (2014) Evolution of polyploidy and functional diploidization in sturgeons: microsatellite analysis in 10 sturgeon species. J Hered 105:521–531

    Article  Google Scholar 

  • Renshaw MA, Saillant E, Bradfield SC, Gold JR (2006) Microsatellite multiplex panels for genetic studies of three species of marine fishes: red drum (Sciaenops ocellatus), red snapper (Lutjanus campechanus), and cobia (Rachycentron canadum). Aquaculture 253:731–735

    Article  CAS  Google Scholar 

  • Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rochard E, Castelnaud G, Lepage M (1990) Sturgeons (Pisces: Acipenseridae); threats and prospects. J Fish Biol 37:123–132

    Article  Google Scholar 

  • Rochard E, Lepage M, Dumont P, Tremblay S, Gazeau C (2001) Downstream migration of juvenile European sturgeon Acipenser sturio L. in the Gironde Estuary. Estuaries 24:108–115

    Article  Google Scholar 

  • Roques S, Duchesne P, Bernatchez L (1999) Potential of microsatellites for individual assignment: the North Atlantic redfish (genus Sebastes) species complex as a case study. Mol Ecol 8:1703–1717

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Sard NM, O’Malley KG, Jacobson DP, Hogansen MJ, Johnson MA, Banks MA, Krkošek M (2015) Factors influencing spawner success in a spring Chinook salmon (Oncorhynchus tshawytscha) reintroduction program. Can J Fish Aquat Sci 72:1390–1397

    Article  Google Scholar 

  • Schreier A, Stephenson S, Rust P, Young S (2015) The case of the endangered Kootenai River white sturgeon (Acipenser transmontanus) highlights the importance of post-release genetic monitoring in captive and supportive breeding programs. Biol Conserv 192:74–81

    Article  Google Scholar 

  • Valière N (2002) GIMLET, a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Article  Google Scholar 

  • Waits L, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  CAS  PubMed  Google Scholar 

  • Waldman JR, Doukakis P, Wirgin I (2008) Molecular analysis as a conservation tool for monitoring the trade of North American sturgeons and paddlefish. J Appl Ichthyol 24:20–28

    Article  Google Scholar 

  • Walsh P, Metzger D, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Wan QH, Wu H, Fujihara T, Fang SG (2004) Which genetic marker for which conservation genetics issue? Electrophoresis 25:2165–2176

    Article  CAS  PubMed  Google Scholar 

  • Welsh AB, Blumberg M, May B (2003) Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol Ecol Notes 3:47–55

    Article  CAS  Google Scholar 

  • Williot P, Rouault T, Brun R, Pelard M, Mercier D (2002) Status of caught wild spawners and propagation of the endangered sturgeon Acipenser sturio in France: a synthesis. Int Rev Hydrobiol 87:515–524

    Article  Google Scholar 

  • Williot P, Rouault T, Pelard M, Mercier D, Lepage M, Davail-Cuisset B, Kirschbaum F, Ludwig A (2007) Building a broodstock of the critically endangered sturgeon Acipenser sturio: problems and observations associated with the adaptation of wild-caught fish to hatchery conditions. Cybium 31:3–11

    Google Scholar 

  • Wilson CD, Beatty GE, Bradley CR, Clarke HC, Preston SJ, Roberts D and Provan J (2012) The importance of population genetic information in formulating ex situ conservation strategies for the freshwater pearl mussel (Margaritifera margaritifera L.) in Northern Ireland. Anim Conserv 15(6):593–602

    Article  Google Scholar 

  • Wirgin I, Maceda L, Grunwald C, King TL (2015) Population origin of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus by-catch in U.S. Atlantic coast fisheries. J Fish Biol 86:1251–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozney KM, Haxton TJ, Kjartanson S, Wilson CC (2010) Genetic assessment of lake sturgeon (Acipenser fulvescens) population structure in the Ottawa River. Environ Biol Fish 90:183–195

    Article  Google Scholar 

  • Zane L, Patarnello T, Ludwig A, Fontana F, Congiu L (2002) Isolation and characterization of microsatellites in the Adriatic sturgeon (Acipenser naccarii). Mol Ecol Notes 2:586–588

    Article  CAS  Google Scholar 

  • Zeng Q, Ye H, Ludwig A, Wang Z, Zhang Y, Peng Z (2013) Microsatellite development for the endangered Yangtze sturgeon (Acipenser dabryanus Duméril, 1869) using 454 sequencing. J AppIchthyol 29:1219–1221

    CAS  Google Scholar 

  • Zhu B, Liao X, Shao Z, Rosenthal H, Chang J (2005) Isolation and characterization of microsatellites in Chinese sturgeon, Acipenser sinensis. Mol Ecol Notes 5:888–892

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the regional funders of this study: Agence de l’Eau Adour Garonne, DREAL (Direction régionale de l’environnement, de l’aménagement et du logement; Aquitaine), région Aquitaine, Conseil Régional Gironde. This study was also supported by the National French Action Plan in favor of A. sturio restoration. We thank Pierre Duchesne for help in assignment analyses using PASOS and PAPA programs, Frédérique Cerqueira and Erick Desmarais for their help in data acquisition. Data used in this work were (partly) produced through the Genotyping and Sequencing facilities of ISEM (Institut des Sciences de l’Evolution-Montpellier) and Labex Centre Méditerranéen Environnement Biodiversité. We also thank technicians from Migado association and from Irstea for fins sampling within the captive stock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Roques.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 952 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roques, S., Berrebi, P., Chèvre, P. et al. Parentage assignment in the critically endangered European sturgeon (Acipenser sturio) based on a novel microsatellite multiplex assay: a valuable resource for restocking, monitoring and conservation programs. Conservation Genet Resour 8, 313–322 (2016). https://doi.org/10.1007/s12686-016-0538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-016-0538-7

Keywords

Navigation