Skip to main content
Log in

Formic Acid Electrooxidation on Palladium Nano-Layers Deposited onto Pt(111): Investigation of the Substrate Effect

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The influence of Pd nano-layers electro-deposited onto Pt(111) single crystal has been systematically studied toward the formic acid electrochemical oxidation reaction in H2SO4 and HClO4. The studied PdxML/Pt(111) surfaces (x = 1, 2, 5, and 16 monolayers (ML)) are all more active than Pt(111) toward formic acid oxidation, even if the activity is very sensitive to the Pd film thickness and morphology. In sulfate solution, the competitive adsorption of long-range ordered (bi)sulfate on the pseudomorphic Pd terraces effectively hinders the formic acid oxidation only on the thinnest films. We could observe the different roles of the (bi)sulfate adsorption on the first and on the following deposited Pd layers. The sulfate adsorption competitive role rapidly fades away beyond about 5 ML of equivalent thickness, due to the surface roughness increasing and terraces width diminishing. In perchlorate media, anions do not adsorb competitively with formic acid intermediates, allowing a larger activity of the formic acid oxidation up to about 5 ML. At higher thicknesses, the difference in activity between the two electrolytic media is reduced, and it drops in both electrolytes close to 0.5 V vs. RHE, where Pd surface oxides are formed. Coupling the electrochemical results with the Pd layer structural description previously obtained from in situ SXRD experiments, the outstanding activity of Pd1ML/Pt(111) observed in perchloric solution can be explained by the ligand effect of the underlying platinum atoms on the first pseudomorphic Pd layer. This advantageous effect is lost for Pd deposits thicker than 1 ML.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on request.

References

  1. M. Ahmed, G.A. Attard, E. Wright, J. Sharman, Methanol and formic acid electrooxidation on Nafion modified Pd/Pt{111}: the role of anion specific adsorption in electrocatalytic activity. Catal. Today 202, 128–134 (2013). https://doi.org/10.1016/j.cattod.2012.05.014

    Article  CAS  Google Scholar 

  2. T.H.M. Housmans, A.H. Wonders, M.T.M. Koper, Structure sensitivity of methanol electrooxidation pathways on platinum: an on-line electrochemical mass spectrometry study. J. Phys. Chem. B 110, 10021–10031 (2006). https://doi.org/10.1021/jp055949s

    Article  CAS  PubMed  Google Scholar 

  3. G. Samjeské, A. Miki, M. Osawa, Electrocatalytic oxidation of formaldehyde on platinum under galvanostatic and potential sweep conditions studied by time-resolved surface-enhanced infrared spectroscopy. J. Phys. Chem. C. 111, 15074–15083 (2007). https://doi.org/10.1021/jp0743020

    Article  CAS  Google Scholar 

  4. G. Samjeské, A. Miki, S. Ye, M. Osawa, Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. B. 110, 16559–16566 (2006). https://doi.org/10.1021/jp061891l

    Article  CAS  PubMed  Google Scholar 

  5. E. Herrero, J.M. Feliu, Understanding formic acid oxidation mechanism on platinum single crystal electrodes. Curr. Opin. Electrochem. 9, 145–150 (2018). https://doi.org/10.1016/j.coelec.2018.03.010

    Article  CAS  Google Scholar 

  6. M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms. Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 60, 267 (1975). https://doi.org/10.1016/S0022-0728(75)80261-0

  7. M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms. Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 60, 275 (1975). https://doi.org/10.1016/S0022-0728(75)80262-2.

  8. V.L. Oliveira, E. Sibert, Y. Soldo-Olivier, E.A. Ticianelli, M. Chatenet, Investigation of the electrochemical oxidation reaction of the borohydride anion in palladium layers on Pt(111). Electrochim. Acta 209, 360–368 (2016). https://doi.org/10.1016/j.electacta.2016.05.093

    Article  CAS  Google Scholar 

  9. M. Arenz, V.R. Stamenković, P.N. Ross Jr., N.M. Marković, Surface (electro-)chemistry on Pt(111) modified by a pseudomorphic Pd monolayer. Surf. Sci. 573, 57 (2004). https://doi.org/10.1016/j.susc.2004.05.144

    Article  CAS  Google Scholar 

  10. N. Hoshi, K. Kida, M. Nakamura, M. Nakada, K. Osada, Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 110, 12480 (2006). https://doi.org/10.1021/jp0608372

    Article  CAS  PubMed  Google Scholar 

  11. L.A. Kibler, A.M. El-Aziz, R. Hoyer, D.M. Kolb, Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44, 2080 (2005). https://doi.org/10.1002/anie.200462127

    Article  CAS  Google Scholar 

  12. B. Álvarez, V. Climent, A. Rodes, J.M. Feliu, Anion adsorption on Pt-Pd(111) electrodes in sulphuric acid solution. J. Electroanal. Chem. 497, 125 (2001). https://doi.org/10.1016/S0022-0728(00)00466-6

    Article  Google Scholar 

  13. A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver, J.K. Nørskov, Surface electronic structure and reactivity of transition and noble metals. J Mol Catal A. 115, 421 (1997). https://doi.org/10.1016/S1381-1169(96)00348-2

    Article  CAS  Google Scholar 

  14. M.J. Llorca, J.M. Feliu, A. Aldaz, J. Clavilier, Formic acid oxidation on Pdad + Pt(100) and Pdad + Pt(111) electrodes. J. Electroanal. Chem. 376, 151 (1994). https://doi.org/10.1016/0022-0728(94)03506-7

    Article  CAS  Google Scholar 

  15. M. Baldauf, D.M. Kolb, Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes. J. Phys. Chem. 100, 11375 (1996). https://doi.org/10.1021/jp952859m

    Article  CAS  Google Scholar 

  16. M. Arenz, V.R. Stamenković, T.J. Schmidt, K. Wandelt, P.N. Ross Jr., N.M. Marković, The electro-oxidation of formic acid on Pt–Pd single crystal bimetallic surfaces. Phys. Chem. Chem. Phys. 5, 4242 (2003). https://doi.org/10.1039/b306307k

    Article  CAS  Google Scholar 

  17. H. Miyake, T. Okada, G. Samjeské, M. Osawa, Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy. Phys. Chem. Chem. Phys. 10, 3662 (2008). https://doi.org/10.1039/b805955a

    Article  CAS  PubMed  Google Scholar 

  18. C. Lebouin, Y. Soldo-Olivier, E. Sibert, P. Millet, M. Maret, R. Faure, Electrochemically elaborated palladium nanofilms on Pt(1 1 1): characterization and hydrogen insertion study. J. Electroanal. Chem. 626, 59–65 (2009). https://doi.org/10.1016/j.jelechem.2008.11.005

    Article  CAS  Google Scholar 

  19. M.J. Ball, C.A. Lucas, N.M. Marković, V.R. Stamenković, P.N. Ross Jr., From sub-monolayer to multilayer––an in situ X-ray diffraction study of the growth of Pd films on Pt(111). Surf. Sci. 518, 201 (2002). https://doi.org/10.1016/S0039-6028(02)02122-2

    Article  CAS  Google Scholar 

  20. C. Lebouin, Y. Soldo-Olivier, E. Sibert, M. De Santis, F. Maillard, R. Faure, Evidence of the substrate effect in hydrogen electroinsertion into palladium atomic layers by means of in situ surface X-ray diffraction. Langmuir 25, 4251–4255 (2009). https://doi.org/10.1021/la803913e

    Article  CAS  PubMed  Google Scholar 

  21. Y. Soldo-Olivier, M.C. Lafouresse, M. De Santis, C. Lebouin, M. De Boissieu, É. Sibert, Hydrogen electro-insertion into Pd/Pt(111) nanofilms: an in situ surface X-ray diffraction study. J. Phys. Chem. C 115, 12041–12047 (2011). https://doi.org/10.1021/jp201376d

    Article  CAS  Google Scholar 

  22. V.L. Oliveira, E. Sibert, Y. Soldo-Olivier, E.A. Ticianelli, M. Chatenet, Borohydride electrooxidation reaction on Pt(111) and Pt(111) modified by a pseudomorphic Pd monolayer. Electrochim. Acta 190, 790–796 (2016). https://doi.org/10.1016/j.electacta.2016.01.013

    Article  CAS  Google Scholar 

  23. V. Briega-Martos, E. Herrero, J.M. Feliu, Borohydride electro-oxidation on Pt single crystal electrodes. Electrochem. Commun. 51, 144–147 (2015). https://doi.org/10.1016/j.elecom.2014.12.024

    Article  CAS  Google Scholar 

  24. M. Wakisaka, S. Morishima, Y. Hyuga, H. Uchida, M. Watanabe, Electrochemical behavior of Pt-Co(111), (100) and (110) alloy single-crystal electrodes in 0.1 M HClO4 and 0.05 M H2SO4 solution as a function of Co content. Electrochem. Comm. 18, 55–57 (2012). https://doi.org/10.1016/j.elecom.2012.02.008

  25. L. Blum, D.A. Huckaby, N. Marzari, R. Car, The electroreduction of hydrogen on platinum(111) in acidic media. J. Electroanal. Chem. 537, 7–19 (2002). https://doi.org/10.1016/S0022-0728(02)01187-7

    Article  CAS  Google Scholar 

  26. A.M. Funtikov, U. Stimming, R. Vogel, Anion adsorption from sulfuric acid solutions on Pt(111) single crystal electrodes. J. Electroanal. Chem. 428, 147 (1997). https://doi.org/10.1016/S0022-0728(96)05051-6

    Article  CAS  Google Scholar 

  27. J.-F. Li, A. Rudnev, Y. Fu, N. Bodappa, T. Wandlowski, In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications. ACS Nano 7, 8940–8952 (2013). https://doi.org/10.1021/nn403444j

    Article  CAS  PubMed  Google Scholar 

  28. V. Climent, N.M. Marković, P.N. Ross Jr., Kinetics of oxygen reduction on an epitaxial film of palladium on Pt(111). J. Phys. Chem. B 104, 3116 (2000). https://doi.org/10.1021/jp993480t

    Article  CAS  Google Scholar 

  29. M. Arenz, V.R. Stamenković, T.J. Schmidt, K. Wandelt, P.N. Ross Jr., N.M. Marković, CO adsorption and kinetics on well-characterized Pd films on Pt(111) in alkaline solutions. Surf. Sci. 506, 287 (2002). https://doi.org/10.1016/S0039-6028(02)01423-1

    Article  CAS  Google Scholar 

  30. R. Hoyer, L.A. Kibler, D.M. Kolb, The initial stages of palladium deposition onto Pt(111). Electrochim. Acta 49, 63–72 (2003). https://doi.org/10.1016/j.electacta.2003.07.008

    Article  CAS  Google Scholar 

  31. A.M. El-Aziz, R. Hoyer, L.A. Kibler, D.M. Kolb, Potential of zero free charge of Pd overlayers on Pt(1 1 1). Electrochim. Acta 51, 2518 (2006). https://doi.org/10.1016/j.electacta.2005.07.036

    Article  CAS  Google Scholar 

  32. A.M. Funtikov, U. Linke, U. Stimming, R. Vogel, An in-situ STM study of anion adsorption on Pt(111) from sulfuric acid solutions. Surf. Sci. 324, L343 (1995). https://doi.org/10.1016/0039-6028(94)00774-8

    Article  CAS  Google Scholar 

  33. A.M. El-Aziz, L.A. Kibler, Influence of steps on the electrochemical oxidation of CO adlayers on Pd(111) and on Pd films electrodeposited onto Au(111). J. Electroanal. Chem. 534, 107 (2002). https://doi.org/10.1016/S0022-0728(02)01150-6

    Article  CAS  Google Scholar 

  34. N. Hoshi, K. Kagaya, Y. Hori, Voltammograms of the single-crystal electrodes of palladium in aqueous sulfuric acid electrolyte: Pd(S)-[n(111)x(111)] and Pd(S)-[n(100)x(111)]. J. Electroanal. Chem. 485, 55 (2000). https://doi.org/10.1016/S0022-0728(00)00098-X

    Article  CAS  Google Scholar 

  35. B. Álvarez, J.M. Feliu, J. Clavilier, Long-range effects on palladium deposited on Pt(111). Electrochem. Commun. 4, 379 (2002). https://doi.org/10.1016/S1388-2481(02)00315-6

    Article  Google Scholar 

  36. G.-Q. Lu, A. Crown, A. Wieckowski, Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes. J. Phys. Chem. B 103, 9700–9711 (1999). https://doi.org/10.1021/jp992297x

    Article  CAS  Google Scholar 

  37. M. Arenz, V.R. Stamenković, T.J. Schmidt, K. Wandelt, P.N. Ross Jr., N.M. Marković, The effect of specific chloride adsorption on the electrochemical behavior of ultrathin Pd films deposited on Pt(111) in acid solution. Surf. Sci. 523, 199 (2003). https://doi.org/10.1016/S0039-6028(02)02456-1

    Article  CAS  Google Scholar 

  38. A.O. Elnabawy, J.A. Herron, Z. Liang, R.R. Adzic, M. Mavrikakis, Formic acid electrooxidation on Pt or Pd monolayer on transition-metal single crystals: a first-principles structure sensitivity analysis. ACS Catal. 11, 5294–5309 (2021). https://doi.org/10.1021/acscatal.1c00017

    Article  CAS  Google Scholar 

  39. J. Lei, Z. Wei, M. Xu, J. Wei, Y. Chen, S. Ye, Effect of sulfate adlayer on formic acid oxidation on Pd(111) electrode. Chin. J. Chem. Phys. 32, 649–656 (2019). https://doi.org/10.1063/1674-0068/cjcp1904079

    Article  CAS  Google Scholar 

  40. Z. Liang, L. Song, A.O. Elnabawy, N. Marinkovic, M. Mavrikakis, R.R. Adzic, Platinum and palladium monolayer electrocatalysts for formic acid oxidation. Top Catal. 63, 742–749 (2020). https://doi.org/10.1007/s11244-020-01264-5

    Article  CAS  Google Scholar 

  41. X. Chen, L.P. Granda-Marulanda, I.T. McCrum, M.T.M. Koper, Adsorption processes on a Pd monolayer-modified Pt(111) electrode. Chem. Sci. 11, 1703–1713 (2020). https://doi.org/10.1039/C9SC05307G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has been financially supported by the CAPES (project 728714–3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Sibert.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, V.L., Soldo-Olivier, Y., Ticianelli, E.A. et al. Formic Acid Electrooxidation on Palladium Nano-Layers Deposited onto Pt(111): Investigation of the Substrate Effect. Electrocatalysis 14, 561–569 (2023). https://doi.org/10.1007/s12678-023-00816-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00816-z

Keywords

Navigation