Skip to main content

Advertisement

Log in

Degrade Methyl Orange by a Reverse Electrodialysis Reactor Coupled with Electrochemical Direct Oxidation and Electro-Fenton Processes

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The reverse electrodialysis reactor (REDR) degrades wastewater by coupling with different treatment methods. In the paper, the anodic oxidation (AO) and electro-Fenton (EF) processes were adopted in REDR. And the three different anodes, ruthenium and iridium dioxide (Ti/RuO2-IrO2), lead dioxide (Ti/PbO2) and boron-doped diamond (BDD) were used as the anode in REDR. The influences of working fluids velocity, electrode rinse solution (ERS) flow rate on degradation performance under different anodes were determined and discussed. The results indicated that increasing the working fluid velocity and ERS flow rate can improve COD removal efficiency. And the Ti/PbO2 presented a greater degradation effect than other electrodes. Moreover, the paper investigated the effect of operating conditions on total current efficiency (TCE) and the energy consumption (EC) of REDR when three anodes were employed. The results showed the growth of ERS flow rate could significantly enhance the TCE. However, the increasing of working fluids velocity and ERS flow rate also enhances the EC of the system. Meanwhile, among the three anodes, the value of TCE could reach the largest when the BDD anode was adopted in REDR under the same output current. Furthermore, the system presented excellent economic efficiency compared with other traditional oxidation processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. C. Trellu, E. Mousset, Y. Pechaud, D. Huguenot, E.D. van Hullebusch, G. Esposito et al., Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. J. Hazard. Mater. 306, 149–174 (2016). https://doi.org/10.1016/j.jhazmat.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  2. N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 4, 762–787 (2016). https://doi.org/10.1016/j.jece.2015.12.016

    Article  CAS  Google Scholar 

  3. D.A. Yaseen, M. Scholz, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Environ. Sci. Technol. 16, 1193–1226 (2019). https://doi.org/10.1007/s13762-018-2130-z

    Article  CAS  Google Scholar 

  4. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B 202, 217–261 (2017). https://doi.org/10.1016/j.apcatb.2016.08.037

    Article  CAS  Google Scholar 

  5. I. Sires, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21, 8336–8367 (2014). https://doi.org/10.1007/s11356-014-2783-1

    Article  CAS  Google Scholar 

  6. S. Garcia-Segura, J.D. Ocon, M.N. Chong, Electrochemical oxidation remediation of real wastewater effluents - A review. Process Saf. Environ. Prot. 113, 48–67 (2018). https://doi.org/10.1016/j.psep.2017.09.014

    Article  CAS  Google Scholar 

  7. A.R. Lado Ribeiro, N.F.F. Moreira, G.L. Puma, A.M.T. Silva, Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem. Eng. J. 363, 155–173 (2019). https://doi.org/10.1016/j.cej.2019.01.080

    Article  CAS  Google Scholar 

  8. S.O. Ganiyu, C.A. Martinez-Huitle, M.A. Rodrigo, Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Appl. Catal. B 270, (2020). https://doi.org/10.1016/j.apcatb.2020.118857

  9. X. Luo, X. Cao, Y. Mo, K. Xiao, X. Zhang, P. Liang et al., Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat. Electrochem. Commun. 19, 25–28 (2012). https://doi.org/10.1016/j.elecom.2012.03.004

    Article  CAS  Google Scholar 

  10. P. Palenzuela, M. Micari, B. Ortega-Delgado, F. Giacalone, G. Zaragoza, D.-C. Alarcon-Padilla et al., Performance Analysis of a RED-MED Salinity Gradient Heat Engine. Energies 11, (2018). https://doi.org/10.3390/en11123385

  11. R. Long, B. Li, Z. Liu, W. Liu, Hybrid membrane distillation-reverse electrodialysis electricity generation system to harvest low-grade thermal energy. J. Membr. Sci. 525, 107–115 (2017). https://doi.org/10.1016/j.memsci.2016.10.035

    Article  CAS  Google Scholar 

  12. F. Zhang, S. Xu, D. Feng, S. Chen, R. Du, C. Su et al., A low-temperature multi-effect desalination system powered by the cooling water of a diesel engine. Desalination 404, 112–120 (2017). https://doi.org/10.1016/j.desal.2016.11.006

    Article  CAS  Google Scholar 

  13. A. Al-Othman, M. Tawalbeh, M.E. Assad, T. Alkayyali, A. Eisa, Novel multi-stage flash (MSF) desalination plant driven by parabolic trough collectors and a solar pond: A simulation study in UAE. Desalination 443, 237–244 (2018). https://doi.org/10.1016/j.desal.2018.06.005

    Article  CAS  Google Scholar 

  14. D. Gonzalez, J. Amigo, F. Suarez, Membrane distillation: Perspectives for sustainable and improved desalination. Renewable Sustainable Energy Rev. 80, 238–259 (2017). https://doi.org/10.1016/j.rser.2017.05.078

    Article  Google Scholar 

  15. O. Scialdone, A. D’Angelo, E. De Lume, A. Galia, Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients. Electrochim. Acta 137, 258–265 (2014). https://doi.org/10.1016/j.electacta.2014.06.007

    Article  CAS  Google Scholar 

  16. O. Scialdone, A. D’Angelo, A. Galia, Energy generation and abatement of Acid Orange 7 in reverse electrodialysis cells using salinity gradients. J. Electroanal. Chem. 738, 61–68 (2015). https://doi.org/10.1016/j.jelechem.2014.11.024

    Article  CAS  Google Scholar 

  17. Y. Zhou, K. Zhao, C. Hu, H. Liu, Y. Wang, J. Qu, Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis. Electrochim. Acta 269, 128–135 (2018). https://doi.org/10.1016/j.electacta.2018.02.136

    Article  CAS  Google Scholar 

  18. P.F. Ma, X.G. Hao, A. Galia, O. Scialdone, Development of a process for the treatment of synthetic wastewater without energy inputs using the salinity gradient of wastewaters and a reverse electrodialysis stack. Chemosphere 248, 8 (2020). https://doi.org/10.1016/j.chemosphere.2020.125994

    Article  CAS  Google Scholar 

  19. S. Xu, Q. Leng, D. Jin, X. Wu, Z. Xu, P. Wang et al., Experimental investigation on dye wastewater treatment with reverse electrodialysis reactor powered by salinity gradient energy. Desalination 495, (2020). https://doi.org/10.1016/j.desal.2020.114541

  20. S. Xu, Q. Leng, X. Wu, Z. Xu, J. Hu, D. Wu et al., Influence of output current on decolorization efficiency of azo dye wastewater by a series system with multi-stage reverse electrodialysis reactors. Energy Convers. Manage. 228, (2021). https://doi.org/10.1016/j.enconman.2020.113639

  21. G.R. Salazar-Banda, G.D.S. Santos, I.M.D. Gonzaga, A.R. Doria, K.I.B. Eguiluz, Developments in electrode materials for wastewater treatment. Curr. Opin. Electrochem. 26, (2021). https://doi.org/10.1016/j.coelec.2020.100663

  22. G.R.P. Malpass, A.D. Motheo, Recent advances on the use of active anodes in environmental electrochemistry. Curr. Opin. Electrochem. 27, (2021). https://doi.org/10.1016/j.coelec.2021.100689

  23. Z.Z. Hu, J.J. Cai, G. Song, Y.S. Tian, M.H. Zhou, Anodic oxidation of organic pollutants: Anode fabrication, process hybrid and environmental applications. Curr. Opin. Electrochem. 26, (2021). https://doi.org/10.1016/j.coelec.2020.100659

  24. I. Sires, E. Brillas, Upgrading and expanding the electro-Fenton and related processes. Curr. Opin. Electrochem. 27, (2021). https://doi.org/10.1016/j.coelec.2020.100686

  25. L. Labiadh, A. Barbucci, M.P. Carpanese, A. Gadri, S. Ammar, M. Panizza, Comparative depollution of Methyl Orange aqueous solutions by electrochemical incineration using TiRuSnO2, BDD and PbO2 as high oxidation power anodes. J. Electroanal. Chem. 766, 94–99 (2016). https://doi.org/10.1016/j.jelechem.2016.01.036

    Article  CAS  Google Scholar 

  26. E.B. Cavalcanti, S.G. Segura, F. Centellas, E. Brillas, Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: Degradation kinetics and oxidation products. Water Res. 47, 1803–1815 (2013). https://doi.org/10.1016/j.watres.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  27. M. Malakootian, A. Moridi, Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions. Process Saf. Environ. Prot. 111, 138–147 (2017). https://doi.org/10.1016/j.psep.2017.06.008

    Article  CAS  Google Scholar 

  28. S. Qiu, D. He, J.X. Ma, T.X. Liu, T.D. Waite, Kinetic Modeling of the Electro-Fenton Process: Quantification of Reactive Oxygen Species Generation. Electrochim. Acta 176, 51–58 (2015). https://doi.org/10.1016/j.electacta.2015.06.103

    Article  CAS  Google Scholar 

  29. J.H. Han, H. Kim, K.S. Hwang, N. Jeong, C.S. Kim, Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis. J. Electrochem. Sci. Technol. 10, 302–312 (2019). https://doi.org/10.33961/jecst.2019.03160

    Article  CAS  Google Scholar 

  30. C.A. Martinez-Huitle, E.V. dos Santos, D.M. de Araujo, M. Panizza, Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. J. Electroanal. Chem. 674, 103–107 (2012). https://doi.org/10.1016/j.jelechem.2012.02.005

    Article  CAS  Google Scholar 

  31. E. Mousset, Y. Pechaud, N. Oturan, M.A. Oturan, Charge transfer/mass transport competition in advanced hybrid electrocatalytic wastewater treatment: Development of a new current efficiency relation. Appl. Catal. B 240, 102–111 (2019). https://doi.org/10.1016/j.apcatb.2018.08.055

    Article  CAS  Google Scholar 

  32. E. Tsantaki, T. Velegraki, A. Katsaounis, D. Mantzavinos, Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode. J. Hazard. Mater. 207, 91–96 (2012). https://doi.org/10.1016/j.jhazmat.2011.03.107

    Article  CAS  PubMed  Google Scholar 

  33. N. Abdessamad, H. Akrout, G. Hamdaoui, K. Elghniji, M. Ksibi, L. Bousselmi, Evaluation of the efficiency of monopolar and bipolar BDD electrodes for electrochemical oxidation of anthraquinone textile synthetic effluent for reuse. Chemosphere 93, 1309–1316 (2013). https://doi.org/10.1016/j.chemosphere.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  34. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. J. Colloid Interface Sci. 362, 457–462 (2011). https://doi.org/10.1016/j.jcis.2011.06.067

    Article  CAS  PubMed  Google Scholar 

  35. Y. Xiao, J.M. Hill, Mechanistic insights for the electro-Fenton regeneration of carbon materials saturated with methyl orange: Dominance of electrodesorption. J. Hazard. Mater. 367, 59–67 (2019). https://doi.org/10.1016/j.jhazmat.2018.12.066

    Article  CAS  PubMed  Google Scholar 

  36. M. Tedesco, A. Cipollina, A. Tamburini, G. Micale, Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. J. Membr. Sci. 522, 226–236 (2017). https://doi.org/10.1016/j.memsci.2016.09.015

    Article  CAS  Google Scholar 

  37. J. Hu, S. Xu, X. Wu, Multi-stage reverse electrodialysis: Strategies to harvest salinity gradient energy. Energy Convers. Manage. 803–815 (2019)

  38. M. Tedesco, E. Brauns, A. Cipollina, G. Micale, P. Modica, G. Russo et al., Reverse electrodialysis with saline waters and concentrated brines: A laboratory investigation towards technology scale-up. J. Membr. Sci. 492, 9–20 (2015). https://doi.org/10.1016/j.memsci.2015.05.020

    Article  CAS  Google Scholar 

  39. O.M. Rodriguez-Narvaez, A.R. Picos, N. Bravo-Yumi, M. Pacheco-Alvarez, C.A. Martinez-Huitle, J.M. Peralta-Hernandez, Electrochemical oxidation technology to treat textile wastewaters. Curr. Opin. Electrochem. 29, (2021). https://doi.org/10.1016/j.coelec.2021.100806

  40. B. Ramirez, V. Rondan, L. Ortiz-Hernandez, S. Silva-Martinez, A. Alvarez-Gallegos, Semi-empirical chemical model for indirect advanced oxidation of Acid Orange 7 using an unmodified carbon fabric cathode for H2O2 production in an electrochemical reactor. J. Environ. Manage. 171, 29–34 (2016). https://doi.org/10.1016/j.jenvman.2016.02.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundations of China (NSFC, No. 51776029 and No.52076026).

Funding

National Natural Science Foundation of China, 51776029, Shiming Xu, 52076026, Xi Wu

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiming Xu.

Ethics declarations

Conflict of Interest

The authors declare that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, Q., Xu, S., Wu, X. et al. Degrade Methyl Orange by a Reverse Electrodialysis Reactor Coupled with Electrochemical Direct Oxidation and Electro-Fenton Processes. Electrocatalysis 13, 242–254 (2022). https://doi.org/10.1007/s12678-022-00712-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00712-y

Keywords

Navigation