Skip to main content
Log in

Scalable Production of Monolayer Shell(Pt)@Core(Pd) Nanoparticles by Electroless Cu UPD for Oxygen Reduction Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this article, we discuss an electroless under potential deposition (UPD) method to synthesize core@shell monolayer nanoparticles in bulk quantities. In this electroless UPD method, potential is controlled and maintained in the UPD region by a redox couple. This electroless path enables the production of core@shell monolayer catalysts on any type of support, unlike the conventional UPD, where potential is controlled by an external power source which allows for the deposition only on conductive supports such as carbon. This was demonstrated by synthesizing Pt(shell)@Pd(core) nanopartricles on both conductive (Vulcan carbon) and non-conductive (alumina) supports by Cu UPD-galvanic replacement method. Core-shell structure of the Pd-Pt nanoparticles was confirmed by STEM characterization. The thickness of Pt shell in Pt@Pd nanoparticles was examined by analytical and experimental observations. Furthermore, catalytic activity of Pt@Pd/C nanoparticles, synthesized by the electroless Cu UPD-galvanic replacement method, was examined for oxygen reduction reaction.

Graphical Abstract

For monolayer deposition in electroless UPD, OCP of redox couple (R/O) ≥ OCP of bulk deposition of UPD metal

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.R. Adzic, Platinum monolayer electrocatalysts: tunable activity, stability, and self-healing properties. Electrocatalysis 3(3-4), 163–169 (2012). https://doi.org/10.1007/s12678-012-0112-3

    Article  CAS  Google Scholar 

  2. D. Takimoto, T. Ohnishi, J. Nutariya, Z. Shen, Y. Ayato, D. Mochizuki, A. Demortière, A. Boulineau, W. Sugimoto, Ru-core@Pt-shell nanosheet for fuel cell electrocatalysts with high activity and durability. J. Catal. 345, 207–215 (2017). https://doi.org/10.1016/j.jcat.2016.11.026

    Article  CAS  Google Scholar 

  3. S.H. Ahn, Y. Liu, T.P. Moffat, Ultrathin platinum films for methanol and formic acid oxidation: activity as a function of film thickness and coverage. ACS Catal. 5(4), 2124–2136 (2015). https://doi.org/10.1021/cs501228j

    Article  CAS  Google Scholar 

  4. I. Mahesh, A. Sarkar, Self-restraining electroless deposition for shell@core particles and influence of lattice parameter on the ORR activity of Pt(shell)@Pd(core)/C electrocatalyst. J. Phys. Chem. C 122(17), 9283–9291 (2018). https://doi.org/10.1021/acs.jpcc.7b12353

    Article  CAS  Google Scholar 

  5. R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Platinum monolayer fuel cell electrocatalysts. Top.Catal. 46(3-4), 249–262 (2007). https://doi.org/10.1007/s11244-007-9003-x

    Article  CAS  Google Scholar 

  6. A. Peles, M. Shao, L. Protsailo, Pt monolayer electrocatalyst for oxygen reduction reaction on Pd-Cu alloy: first-principles investigation. Catalysts 5(3), 1193–1201 (2015). https://doi.org/10.3390/catal5031193

    Article  CAS  Google Scholar 

  7. P.C. Jennings, H.A. Aleksandrov, K.M. Neyman, R.L. Johnston, O2 Dissociation on M@Pt core-shell particles for 3d, 4d, and 5d Transition Metals. J. Phys. Chem. C 119(20), 11031–11041 (2015). https://doi.org/10.1021/jp511598e

    Article  CAS  Google Scholar 

  8. K. Sasaki, J.X. Wang, H. Naohara, N. Marinkovic, K. More, H. Inada, R.R. Adzic, Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochem. Acta 55(8), 2645–2652 (2010). https://doi.org/10.1016/j.electacta.2009.11.106

    Article  CAS  Google Scholar 

  9. F. Taufany, C.J. Pan, J. Rick, H.L. Chou, M.C. Tsai, B.J. Hwang, D.G. Liu, J.F. Lee, M.T. Tang, Y.C. Lee, C.I. Chen, Kinetically controlled autocatalytic chemical process for bulk production of bimetallic core–shell structured nanoparticles. ACS Nano 5(12), 9370–9381 (2011). https://doi.org/10.1021/nn202545a

    Article  CAS  PubMed  Google Scholar 

  10. Y.C. Hsieh, Y. Zhang, D. Su, V. Volkov, R. Si, L. Wu, Y. Zhu, W. An, P. Liu, P. He, S. Ye, R.R. Adzic, J.X. Wang, Ordered bilayer ruthenium–platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 4(1), 2466–2475 (2013). https://doi.org/10.1038/ncomms3466

    Article  CAS  PubMed  Google Scholar 

  11. S. Ambrozik, N. Dimitrov, The deposition of Pt via electroless surface limited redox replacement. Electrochem. Acta 169, 248–255 (2015). https://doi.org/10.1016/j.electacta.2015.04.043

    Article  CAS  Google Scholar 

  12. K. Venkatraman, R. Gusley, L. Yu, Y. Dordi, R. Akolkar, Electrochemical atomic layer deposition of copper: a lead-free process mediated by surface-limited redox replacement of underpotentially deposited zinc. J. Electrochem. Soc. 163(12), D3008–D3013 (2016). https://doi.org/10.1149/2.0021612jes

    Article  CAS  Google Scholar 

  13. I. Mahesh, A. Sarkar, Electrochemical study of oxygen reduction on a carbon-supported core-shell platinum-gold electrocatalyst with tuneable gold surface composition. ChemElectroChem 3(5), 836–845 (2016). https://doi.org/10.1002/celc.201500452

    Article  CAS  Google Scholar 

  14. N. Furuya, S. Koide, Hydrogen adsorption on platinum single-crystal surfaces. Surf. Sci. 220(1), 18–28 (1989). https://doi.org/10.1016/0039-6028(89)90460-3

    Article  CAS  Google Scholar 

  15. K. Yamamoto, D.M. Kolb, R. Kotz, G. Lehmpfuhl, Hydrogen adsorption and oxide formation on platinum single crystal electrodes. J. Electroanal. Chem. 96(2), 233–239 (1979). https://doi.org/10.1016/S0022-0728(79)80380-0

    Article  Google Scholar 

  16. E. Herrero, L.J. Buller, H.D. Abruna, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101(7), 1897–1930 (2001). https://doi.org/10.1021/cr9600363

    Article  CAS  PubMed  Google Scholar 

  17. N. Hoshi, K. Kida, M. Nakamura, M. Nakada, K. Osada, Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 110(25), 12480–12484 (2006). https://doi.org/10.1021/jp0608372

    Article  CAS  PubMed  Google Scholar 

  18. M. Lopez-Atalaya, E. Morallon, F. Cases, J.L. Vazquez, J.M. Perez, Electrochemical oxidation of ethanol on Pt(hkl) basal surfaces in NaOH and Na2CO3 media. J. Power Sources 52(1), 109–117 (1994). https://doi.org/10.1016/0378-7753(94)01950-9

    Article  CAS  Google Scholar 

  19. S.C.S. Lai, M.T.M. Koper, Ethanol electro-oxidation on platinum in alkaline media. Phys. Chem. Chem. Phys. 11(44), 10446–10456 (2009). https://doi.org/10.1039/B913170A

    Article  CAS  PubMed  Google Scholar 

  20. C. Buso-Rogero, E. Herrero, J.M. Feliu, Ethanol oxidation on Pt single-crystal electrodes: surface-structure effects in alkaline medium. ChemPhysChem 15(10), 2019–2028 (2014). https://doi.org/10.1002/cphc.201402044

    Article  CAS  PubMed  Google Scholar 

  21. S. Ambrozik, B. Rawlings, N. Vasiljevic, N. Dimitrov, Metal deposition via electroless surface limited redox replacement. Electrochem. Commun. 44, 19–22 (2014). https://doi.org/10.1016/j.elecom.2014.04.005

    Article  CAS  Google Scholar 

  22. P.J. Cappillino, J.D. Sugar, F.E. Gabaly, T.Y. Cai, Z. Liu, J.L. Stickney, D.B. Robinson, atomic-layer electroless deposition: a scalable approach to surface-modified metal powders. Langmuir 30(16), 4820–4829 (2014). https://doi.org/10.1021/la500477s

    Article  CAS  PubMed  Google Scholar 

  23. T. Yang, G. Cao, Q. Huang, Y. Ma, S. Wan, H. Zhao, N. Li, X. Sun, F. Yin, Surface-limited synthesis of Pt nanocluster decorated Pd hierarchical structures with enhanced electrocatalytic activity toward oxygen reduction reaction. ACS Appl. Mater. Interfaces 7(31), 17162–17170 (2015). https://doi.org/10.1021/acsami.5b04021

    Article  CAS  PubMed  Google Scholar 

  24. M. Inaba, H. Daimon, Development of highly active and durable platinum core-shell catalysts for polymer electrolyte fuel cells. J. Jpn. Petrol. Inst. 58(2), 55–63 (2015). https://doi.org/10.1627/jpi.58.55

    Article  CAS  Google Scholar 

  25. D. Wu, D.J. Solanki, J.L. Ramirez, W. Yang, A. Joi, Y. Dordi, N. Dole, S.R. Brankovic, Electroless deposition of Pb monolayer: a new process and application to surface selective atomic layer deposition. Langmuir 34(38), 11384–11394 (2018). https://doi.org/10.1021/acs.langmuir.8b02272

    Article  CAS  PubMed  Google Scholar 

  26. I. Mahesh, A. Sarkar, Scale-up process of core@shell monolayer catalyst without active potential control through electroless underpotential deposition galvanic replacement. ChemistrySelect 3(41), 11622–11626 (2018). https://doi.org/10.1002/slct.201801616

    Article  CAS  Google Scholar 

  27. C.M.A. Brett, A.M.O. Brett, Electrochemistry principles, methods, and applications (Oxford University Press, Oxford, 1993), p. 156

    Google Scholar 

  28. T. Akbiyik, I. Sonmezoglu, K. Guclu, I. Tor, R. Apak, Protection of ascorbic acid from copper(II)−catalyzed oxidative degradation in the presence of fruit acids: citric, oxalic, tartaric, malic, malonic, and fumaric acids. Int. J. Food Prop. 15(2), 398–411 (2012). https://doi.org/10.1080/10942912.2010.487630

    Article  CAS  Google Scholar 

  29. A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen. Sci. Adv. 3(2), e1600542 (2017). https://doi.org/10.1126/sciadv.1600542

  30. T.-H. Phan, R.E. Schaak, Polyol synthesis of palladium hydride: bulk powders vs. nanocrystals. Chem. Commun. 0(21), 3026–3028 (2009). https://doi.org/10.1039/B902024A

    Article  CAS  Google Scholar 

  31. A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Electrochemical behavior of unsupported shaped palladium nanoparticles. Langmuir 31(5), 1605–1609 (2015). https://doi.org/10.1021/la5025229

  32. K. Jagannathan, D.M. Benson, D.B. Robinson, J.L. Stickney, Hydrogen sorption kinetics on bare and platinum-modified palladium nanofilms, grown by electrochemical atomic layer deposition (E-ALD). J. Electrochem. Soc. 163(12), D3047–D3052 (2016). https://doi.org/10.1149/2.0051612jes

    Article  CAS  Google Scholar 

  33. C. Sarici-Ozdemir, Y. Onal, Statistical analysis of equilibrium and kinetic data for ascorbic acid removal from aqueous solution by activated carbon. Desalin. Water Treat. 51(22-24), 4658–4665 (2013). https://doi.org/10.1080/19443994.2013.769664

    Article  CAS  Google Scholar 

  34. C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1), 83–94 (2004). https://doi.org/10.1016/j.carbon.2003.09.022

    Article  CAS  Google Scholar 

  35. Y. Cai, C. Ma, Y. Zhu, J.X. Wang, R.R. Adzic, Low-coordination sites in oxygen-reduction electrocatalysis: their roles and methods for removal. Langmuir 27(13), 8540–8547 (2011). https://doi.org/10.1021/la200753z

    Article  CAS  PubMed  Google Scholar 

  36. L. Wang, A. Roudgar, M. Eikerling, Ab initio study of stability and site-specific oxygen adsorption energies of pt nanoparticles. J. Phys. Chem. C 113(42), 17989–17996 (2009). https://doi.org/10.1021/jp900965q

    Article  CAS  Google Scholar 

  37. Y. Zhang, Y.-C. Hsieh, V. Volkov, D. Su, W. An, R. Si, Y. Zhu, P. Liu, J.X. Wang, R.R. Adzic, High performance Pt monolayer catalysts produced via core-catalyzed coating in ethanol. ACS Catal. 4(3), 738–742 (2014). https://doi.org/10.1021/cs401091u

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Central Surface Analytical Facility, Department of Metallurgical Engineering and Materials Science, and Sophisticated Analytical Instruments Facility at IIT Bombay for XPS, XRD, TEM and SEM data.

Funding

This study received financial support under the Ramanujan Fellowship of the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ijjada Mahesh or Arindam Sarkar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

ESM 1

(PDF 463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, I., Sarkar, A. Scalable Production of Monolayer Shell(Pt)@Core(Pd) Nanoparticles by Electroless Cu UPD for Oxygen Reduction Reaction. Electrocatalysis 12, 127–136 (2021). https://doi.org/10.1007/s12678-020-00635-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00635-6

Keywords

Navigation