Skip to main content
Log in

Comparison of Electro-Catalytic Activity of Fe-Ni-Co/C and Pd/C Nanoparticles for Glucose Electro-Oxidation in Alkaline Half-Cell and Direct Glucose Fuel Cell

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this paper, the performance of a non-noble metal anode catalyst (Fe-Ni-Co/C) is evaluated and compared with Pd/C electro-catalyst toward the glucose oxidation reaction in the alkaline half-cell and direct glucose fuel cell (DGFC). The electro-oxidation of glucose on Fe-Ni-Co/C and Pd/C is characterized in the half-cell by cyclic voltammetry (CV) and chronoamperometery (CA) techniques. Results indicate that Fe-Ni-Co/C has higher activity and lower tolerance against poisoning intermediate products for glucose oxidation in the alkaline media than that of Pd/C electro-catalyst. Polarization curves of passive air breathing alkaline DGFC show that the DGFC equipped with a Fe-Ni-Co/C anode catalyst produces higher maximum power density (MPD) and open circuit voltage (OCV) compared to a DGFC which employed Pd/C at the anode side; 23 mW cm−2 and 0.93 V versus 14 mW cm−2 and 0.65 V. These results are related to the remarkable activity of Fe-Ni-Co/C electro-catalyst toward glucose oxidation under the alkaline media. Electrochemical impedance response of both cells demonstrates that the DGFC equipped with Fe-Ni-Co/C has lower charge and mass transfer resistance compared to the DGFC equipped with Pd/C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21(10), 1229–1232 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. J.P. Van Wyk, Trends Biotechnol. 19, 172 (2001)

    Article  PubMed  Google Scholar 

  3. D. Basu, S. Basu, Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. Int. J. Hydrog. Energy 37(5), 4678–4684 (2012)

    Article  CAS  Google Scholar 

  4. B. Tao, F. Miao, P.K. Chu, Preparation and characterization of a novel nickel–palladium electrode supported by silicon nanowires for direct glucose fuel cell. Electrochim. Acta 65, 149–152 (2012)

    Article  CAS  Google Scholar 

  5. M.A. Al-Omair, A.H. Touny, F.A. Al-Odail, M.M. Saleh, Electrocatalytic oxidation of glucose at nickel phosphate nano/micro particles modified electrode. Electrocatalysis 8(4), 340–350 (2017)

    Article  CAS  Google Scholar 

  6. P.C. Hallenbeck, M. Grogger, D. Vereka, Recent Advances in Microbial Electrocatalysis. Electrocatalysis 5(4), 319–329 (2014)

    Article  CAS  Google Scholar 

  7. K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70(9), 5373–5382 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Chawla, V. Sharma, J. Kaur Randhawa, Facile one pot synthesis of CuO nanostructures and their effect on nonenzymatic glucose biosensing. Electrocatalysis 8(1), 27–35 (2017)

    Article  CAS  Google Scholar 

  9. S. Aquino Neto, J.C. Forti, A.R. De Andrade, An overview of enzymatic biofuel cells. Electrocatalysis 1(1), 87–94 (2010)

    Article  CAS  Google Scholar 

  10. L. An, T. Zhao, S. Shen, Q. Wu, R. Chen, Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output. J. Power Sources 196(1), 186–190 (2011)

    Article  CAS  Google Scholar 

  11. S. Kerzenmacher, J. Ducree, R. Zengerle, F. von Stetten, Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182(1), 1–17 (2008)

    Article  CAS  Google Scholar 

  12. J. McGinley, F.N. McHale, P. Hughes, C.N. Reid, A.P. McHale, Production of electrical energy from carbohydrates using a transition metal-catalysed liquid alkaline fuel cell. Biotechnol. Lett. 26(23), 1771–1776 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. X. Xia, X. Cao, P. Liang, X. Huang, S. Yang, G. Zhao, Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells. Appl. Microbiol. Biotechnol. 87(1), 383–390 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. P. Kavanagh, S. Boland, P. Jenkins, D. Leech, Performance of a glucose/O2 enzymatic biofuel cell containing a mediated melanocarpus albomyceslaccase cathode in a physiological buffer. Fuel Cells 9(1), 79–84 (2009)

    Article  CAS  Google Scholar 

  15. C. Jin, I. Taniguchi, Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells. Mat. Lett. 61(11-12), 2365–2367 (2007)

    Article  CAS  Google Scholar 

  16. A. Habrioux, E. Sibert, K. Servat, W. Vogel, K.B. Kokoh, N. AlonsoVante, Activity of platinum−gold alloys for glucose electrooxidation in biofuel cells. J. Phys. Chem. B 111(34), 10329–10333 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. D. Basu, S. Basu, A study on direct glucose and fructose alkaline fuel cell. Electrochim. Acta 55(20), 5775–5779 (2010)

    Article  CAS  Google Scholar 

  18. F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens. Bioelectron. 24(12), 3481–3486 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. B.Y. Song, Y.S. Li, Y.L. He, Z.D. Cheng, Anode structure design for the high-performance anion-exchange membrane direct glucose fuel cell. Energy Procedia 61, 2118–2122 (2014)

    Article  CAS  Google Scholar 

  20. S. Hebiel, T.W. Napporn, K.B. Kokoh, Beneficial promotion of underpotentially deposited lead adatoms on gold nanorods toward glucose electrooxidation. Electrocatalysis 8(1), 67–73 (2017)

    Article  CAS  Google Scholar 

  21. I. Potzelberger, S. Hild, C.C. Mardare, A.W. Hassel, L.M. Uiberlacker, Electrocatalysis 179, 1 (2017)

    Google Scholar 

  22. E.H. Yu, X. Wang, U. Krewer, L. Li, K. Scott, Direct oxidation alkaline fuelcells: from materials to systems. Energy Environ. Sci. 5(2), 5668–5680 (2012)

    Article  CAS  Google Scholar 

  23. V.S. Bagotzky, Y.B. Vasilyev, Some characteristics of oxidation reactions of organic compounds on platinum electrodes. Electrochim. Acta 9(7), 869–882 (1964)

    Article  Google Scholar 

  24. H. Yin, C. Zhou, C. Xu, P. Liu, X. Xu, Y. Ding, Aerobic oxidation of D-glucose on support-free nanoporous gold. J. Phys. Chem. C 112(26), 9673–9678 (2008)

    Article  CAS  Google Scholar 

  25. D. Basu, S. Basu, Synthesis, characterization and application of platinum based bi-metallic catalysts for direct glucose alkaline fuel cell. Electrochim. Acta 56(17), 6106–6113 (2011)

    Article  CAS  Google Scholar 

  26. M. Pasta, R. Ruffo, E. Falletta, C. Mari, C. Della Pina, Gold bulletin 43, 57 (2010)

    Article  CAS  Google Scholar 

  27. J.P. Spets, Y. Kiros, M. Kuosa, J. Rantanen, M. Lampinen, K. Saari, Bioorganic materials as a fuel source for low-temperature direct-mode fuel cells. Electrochim. Acta 55(26), 7706–7709 (2010)

    Article  CAS  Google Scholar 

  28. M. Gao, X. Liu, M. Irfan, X. Wang, P. Zhang, Int. J. Hydrogen Energy in Press (2017)

  29. F. Cuevas-Muniz, M. Guerra-Balcazar, F. Castaneda, J. Ledesma-Garcia, L. Arriaga, Performance of Au and AuAg nanoparticles supported on Vulcan in a glucose laminar membraneless microfuel cell. J. Power Sources 196(14), 5853–5857 (2011)

    Article  CAS  Google Scholar 

  30. S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode. Sensors Actuators B Chem. 155(2), 592–597 (2011)

    Article  CAS  Google Scholar 

  31. J. Wang, Z. Wang, D. Zhao, C. Xu, Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Anal. Chim. Acta 832, 34–43 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. A. Brouzgou, L.L. Yan, S.Q. Song, P. Tsiakaras, Glucose electrooxidation over PdxRh/C electrocatalysts in alkaline medium. Appl. Catal. B Environ. 147, 481–489 (2014)

    Article  CAS  Google Scholar 

  33. S.M. El-Refaei, M.I. Awad, B.E. El-Anadouli, M.M. Saleh, Electrocatalytic glucose oxidation at binary catalyst of nickel and manganese oxides nanoparticles modified glassy carbon electrode: Optimization of the loading level and order of deposition. Electrochim. Acta 92, 460–467 (2013)

    Article  CAS  Google Scholar 

  34. K.C. Lin, Y.C. Lin, S.M. Chen, A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles. Electrochim. Acta 96, 164–172 (2013)

    Article  CAS  Google Scholar 

  35. M. Zhiani, H.A. Gasteiger, M. Piana, S. Catanorchi, Comparative study between platinum supported on carbon and non-noble metal cathode catalyst in alkaline direct ethanol fuel cell (ADEFC). Int. J. Hydrog. Energy 36(8), 5110–5116 (2011)

    Article  CAS  Google Scholar 

  36. V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp, M. Zhiani, Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol=methanol, ethanol, glycerol). J. Power Sources 190(2), 241–251 (2009)

    Article  CAS  Google Scholar 

  37. F. Hu, G. Cui, Z. Wei, P.K. Shen, Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes. Electrochem. Commun. 10(9), 1303–1306 (2008)

    Article  CAS  Google Scholar 

  38. C. Xu, Z. Tian, Z. Chen, S.P. Jiang, Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media. Electrochem. Commun. 10(2), 246–249 (2008)

    Article  CAS  Google Scholar 

  39. J. Chen, T. Matsuura, M. Hori, Novel gas diffusion layer with water management function for PEMFC. J. Power Sources 131(1-2), 155–161 (2004)

    Article  CAS  Google Scholar 

  40. I. Becerik, F. Kadirgan, The electrocatalytic properties of palladium electrodes for the oxidation of d-glucose in alkaline medium. Electrochim. Acta 37(14), 2651–2657 (1992)

    Article  CAS  Google Scholar 

  41. L. Yan, A. Brouzgou, Y. Meng, M. Xiao, P. Tsiakaras, S. Song, Appl. Catal. B Environ. 150, 268 (2014)

    Article  CAS  Google Scholar 

  42. M. Zhiani, B. Rezaei, J. Jalili, Int. J. Hydrog. Energy 35, 929 (2010)

    Google Scholar 

  43. M. Zhiani, H. Rostami, S. Majidi, K. Karami, Bis (dibenzylidene acetone) palladium (0) catalyst for glycerol oxidation in half cell and in alkaline direct glycerol fuel cell. Int. J. Hydrog. Energy 38(13), 5435–5441 (2013)

    Article  CAS  Google Scholar 

  44. A. Bard, L. Faulkner, Electrochemical methods, fundamentals and application (Wiley, Germany, 2001), p. 236

    Google Scholar 

  45. M. Zhiani, S. Majidi, H. Rostami, M.M. Taghiabadi, Comparative study of aliphatic alcohols electrooxidation on zero-valent palladium complex for direct alcohol fuel cells. Int. J. Hydrog. Energy 40(1), 568–576 (2015)

    Article  CAS  Google Scholar 

  46. D. Basu, S. Basu, Synthesis and characterization of Pt–Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell. Int. J. Hydrog. Energy 36(22), 14923–14929 (2011)

    Article  CAS  Google Scholar 

  47. M. Zhiani, S. Majidi, M.M. Taghiabadi, Fuel cells 13, 946 (2013)

    CAS  Google Scholar 

Download references

Acknowledgments

The support of the Isfahan University of Technology, Iranian Nanotechnology Initiative Council, and the Iranian Fuel Cell Steering is acknowledged. The authors also gratefully acknowledge the financial support of INSF through the project No. 96017107. The authors would also like to special thanks to Dr. Mohammad M. Momeni assistant professor of chemistry department of IUT for his corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zhiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhiani, M., Abedini, A. & Majidi, S. Comparison of Electro-Catalytic Activity of Fe-Ni-Co/C and Pd/C Nanoparticles for Glucose Electro-Oxidation in Alkaline Half-Cell and Direct Glucose Fuel Cell. Electrocatalysis 9, 735–743 (2018). https://doi.org/10.1007/s12678-018-0483-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0483-1

Keywords

Navigation