Skip to main content
Log in

Influence on the Electrocatalytic Water Oxidation of M2+/M3+ Cation Arrangement in NiFe LDH: Experimental and Theoretical DFT Evidences

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This contribution reports the effect of the iron content and M2+/M3+ ratio cation arrangement-distribution on the oxygen evolution reaction (OER) catalyzed by layered double hydroxides. The electrocatalysts, containing variable contents of Ni and Fe, were successfully prepared through a homogeneous precipitation method. The formation of LDH structure was verified by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Other properties were determined such as specific surface area, electrical conductivity, and surface basicity. First-principles DFT+U calculations complemented and supported the electrochemical results. According to both the electrochemical and simulation results, the increase of the catalytic activity for the OER on the presence of Fe3+ is closely related with the configuration and distribution of Fe and Ni cations in the brucite layer structure. The effect of iron is indirect, favoring the electron hopping on the Ni sites for certain local configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.J. Sideris, U.G. Nielsen, Z. Gan, C.P. Grey, Science 321, 113 (2008)

    Article  CAS  Google Scholar 

  2. X. Long, Z. Wang, S. Xiao, Y. An, S. Yang, Mater. Today 19, 213 (2015)

    Article  Google Scholar 

  3. M. Gong, H. Dai, Nano Res. 8, 23 (2014)

    Article  Google Scholar 

  4. S. He, Z. An, M. Wei, D.G. Evans, X. Duan, Chem. Commun. 49, 5912 (2013)

    Article  CAS  Google Scholar 

  5. N. Iyi, K. Okamoto, Y. Kaneko, T. Matsumoto, Chem. Lett. 34, 932 (2005)

    Article  CAS  Google Scholar 

  6. X. Xu, L. Feng, H. Zhuangqun, Rev. Adv. Sci. Eng. 3, 158 (2014)

    Article  Google Scholar 

  7. M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 135, 8452 (2013)

    Article  CAS  Google Scholar 

  8. J. Jiang, A. Zhang, L. Li, L. Ai, J. Power Sources 278, 445 (2015)

    Article  CAS  Google Scholar 

  9. Q. Yang, T. Li, Z. Lu, X. Sun, J. Liu, Nano 6, 11789 (2014)

    CAS  Google Scholar 

  10. Y. Xu, Y. Hao, G. Zhang, Z. Lu, S. Han, Y. Li, X. Sun, RSC Adv. 5, 55131 (2015)

    Article  CAS  Google Scholar 

  11. C. Qiao, Y. Zhang, Y. Zhu, C. Cao, X. Bao, J. Xu, J. Mater. Chem. A 3, 6878 (2015)

    Article  CAS  Google Scholar 

  12. X. Yu, M. Zhang, W. Yuan, G. Shi, J. Mater. Chem. A 3, 6921 (2015)

    Article  CAS  Google Scholar 

  13. D.H. Youn, Y. Bin Park, J.Y. Kim, G. Magesh, Y.J. Jang, J.S. Lee, J. Power Sources 294, 437 (2015)

    Article  CAS  Google Scholar 

  14. N. Suzuki, T. Horie, G. Kitahara, M. Murase, K. Shinozaki, Y. Morimoto, Electrocatalysis 5, 114 (2016)

    Google Scholar 

  15. L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136, 6744 (2014)

    Article  CAS  Google Scholar 

  16. J.Y.C. Chen, L. Dang, H. Liang, W. Bi, J.B. Gerken, S. Jin, A.E. Alp, S. Stahl, J. Am. Chem. Soc. 137, 15090 (2015)

    Article  CAS  Google Scholar 

  17. D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.J. Cheng, D. Sokaras, T.C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Nørskov, A. Nilsson, A.T. Bell, J. Am. Chem. Soc. 137, 1305 (2015)

    Article  CAS  Google Scholar 

  18. H.S. Ahn, A.J. Bard, J. Am. Chem. Soc. 138, 313 (2016)

    Article  CAS  Google Scholar 

  19. M. Görlin, P. Chernev, J.F. Araújo, T. Reier, S. Dresp, B. Paul, R. Krähnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 138, 5603 (2016)

    Article  Google Scholar 

  20. W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, ACS Nano 9, 1977 (2015)

    Article  CAS  Google Scholar 

  21. M.A. Oliver-Tolentino, J. Vázquez-Samperio, A. Manzo-Robledo, R.D.G. González-Huerta, J.L. Flores-Moreno, D. Ramírez-Rosales, A. Guzmán-Vargas, J. Phys. Chem. C 118, 22432 (2014)

    Article  CAS  Google Scholar 

  22. Y. Dong, P. Zhang, Y. Kou, Z. Yang, Y. Li, X. Sun, Catal. Letters 145, 1541 (2015)

    Article  CAS  Google Scholar 

  23. Y. Zhang, Inorg. Chem. 21, 3889 (1982)

    Article  CAS  Google Scholar 

  24. G. Kresse, J. Furthmüller. Comp. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  25. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  CAS  Google Scholar 

  26. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  27. K. Burke, J.P. Perdew, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  28. S.L. Dudarev, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    Article  CAS  Google Scholar 

  29. A. Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer, T. Mueller, K.A. Persson, G. Ceder, Comput. Mater. Sci. 50, 2295 (2011)

    Article  CAS  Google Scholar 

  30. Z. Hu, H. Metiu, J. Phys. Chem. C 115, 5841 (2011)

    Article  CAS  Google Scholar 

  31. S.M. Xu, T. Pan, Y.B. Dou, H. Yan, S.T. Zhang, F.Y. Ning, W.Y. Shi, M. Wei, J. Phys. Chem. C 119, 18823 (2015)

    Article  CAS  Google Scholar 

  32. M.A. Oliver-Tolentino, A. Guzmán-Vargas, A. Manzo-Robledo, M.J. Martínez-Ortiz, J.L. Flores-Moreno, Catal. Today 166, 194 (2011)

    Article  CAS  Google Scholar 

  33. B. Grégoire, C. Ruby, C. Carteret, Cryst. Growth Des. 12, 4324 (2012)

    Article  Google Scholar 

  34. Y. Furukawa, K. Tadanaga, A. Hayashi, M. Tatsumisago, Solid State Ionics 192, 185 (2011)

    Article  CAS  Google Scholar 

  35. D. Kubo, K. Tadanaga, A. Hayashi, M. Tatsumisago, J. Electroanal. Chem. 671, 102 (2012)

    Article  CAS  Google Scholar 

  36. F.M. Labajos, V. Rives, M.A. Ulibarri, J. Mater. Sci. 27, 1546 (1992)

    Article  CAS  Google Scholar 

  37. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  38. R. Dębek, K. Zubek, M. Motak, M.E. Galvez, P. Da Costa, T. Grzybek, Comptes Rendus Chim. 18, 1205 (2015)

    Article  Google Scholar 

  39. K. Parida, J. Das, J. Mol. Catal. A Chem. 151, 185 (2000)

    Article  CAS  Google Scholar 

  40. R. Ionescu, O.D. Pavel, R. Bîrjega, R. Zǎvoianu, E. Angelescu, Catal. Letters 134, 309 (2010)

    Article  CAS  Google Scholar 

  41. J.T. Kloprogge, R.L. Frost, J. Solid State Chem. 146, 506 (1999)

    Article  CAS  Google Scholar 

  42. H.P. Komsa, A. Pasquarello, Phys. Rev. Lett. 110, 1 (2013)

    Article  Google Scholar 

  43. R.L. Doyle, M.E.G. Lyons, Electrocatalysis 5, 114 (2014)

    Article  CAS  Google Scholar 

  44. Y. Vlamidis, E. Scavetta, M. Gazzano, D. Tonelli, Electrochim. Acta 188, 653 (2016)

    Article  CAS  Google Scholar 

  45. E. Coronado, R. Gala, C. Martı, A. Ribera, M. Castro 47, 9103 (2008)

    CAS  Google Scholar 

  46. S. Cadars, G. Layrac, G. Corine, M. Deschampss, J.R. Yates, D. Tichit, D. Massiot, Chem. Mater. 23, 2821 (2011)

    Article  CAS  Google Scholar 

  47. G. Abellán, E. Coronado, C. Martí-Gastaldo, J. Waerenborgh, A. Ribera, Inorg. Chem. 52, 10147 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the CONACYT (Mexico) Projects 2013-05-231461, CONACYT INFRA 2014-225161, SIP-IPN 20170776, and CB-2014-01-235840.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ariel Guzmán-Vargas or Edilso Reguera.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Electronic Supplementary Material

ESM 1

(DOCX 448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Vargas, A., Vazquez-Samperio, J., Oliver-Tolentino, M.A. et al. Influence on the Electrocatalytic Water Oxidation of M2+/M3+ Cation Arrangement in NiFe LDH: Experimental and Theoretical DFT Evidences. Electrocatalysis 8, 383–391 (2017). https://doi.org/10.1007/s12678-017-0383-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0383-9

Keywords

Navigation