Skip to main content
Log in

Influence of Halide Ions on Anodic Oxidation of Ethanol on Palladium

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Ethanol oxidation on polycrystalline palladium electrodes in alkaline media was studied in the presence of halide ions. Addition of halide ions decreased the ethanol oxidation peak current monotonically as a function of increasing halide concentration. The extent of poisoning was found to be in the order I > Br > Cl. Thus, Cl ions show appreciable inhibition of ethanol oxidation peak current at [Cl] ~ 10−3 M, whereas Br and I inhibit ethanol oxidation even at [Br] or [I] ~ 10−6 M. The potential of the ethanol oxidation peak shifted positive with increasing halide ion concentration. The extent of the shift was found to be in the order I > Br > Cl. This study is relevant due to the widespread use of palladium halide complexes in the production of Pd electrocatalysts for ethanol oxidation and other electrocatalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Antolini, E.R. Gonzalez, J. Power Sources (2010). doi:10.1016/j.jpowsour.2009.11.145

    Google Scholar 

  2. C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.-M. Léger, J. Power Sources (2002). doi:10.1016/S0378-7753(01)00954-5

    Google Scholar 

  3. D.M. Mackie, S. Liu, M. Benyamin, R. Ganguli, J.J. Sumner, (2013). doi:10.1016/j.jpowsour.2013.01.077

  4. H. Tang, S. Wang, M. Pan, S.P. Jiang, Y. Ruan, Electrochim. Acta (2007). doi:10.1016/j.electacta.2006.10.053

    Google Scholar 

  5. M. Baldauf, W. Preidel, J. Power Sources (1999). doi:10.1016/S0378-7753(99)00332-8

    Google Scholar 

  6. V. Barragán, A. Heinzel, J. Power Sources (2002). doi:10.1016/S0378-7753(01)00896-5

    Google Scholar 

  7. A.M. Zainoodin, S.K. Kamarudin, W.R.W. Daud, Int. J. Hydrog. Energy (2010). doi:10.1016/j.ijhydene.2010.02.036

    Google Scholar 

  8. S. Song, W. Zhou, J. Tian, R. Cai, G. Sun, Q. Xin et al., J. Power Sources (2005). doi:10.1016/j.jpowsour.2004.12.065

    Google Scholar 

  9. T. Schaffer, V. Hacker, J.O. Besenhard, J. Power Sources (2006). doi:10.1016/j.jpowsour.2005.05.080

    Google Scholar 

  10. L. An, T.S. Zhao, R. Chen, Q.X. Wu, J. Power Sources (2011). doi:10.1016/j.jpowsour.2011.03.040

    Google Scholar 

  11. S. Sharma, B.G. Pollet, J. Power Sources (2012). doi:10.1016/j.jpowsour.2012.02.011

    Google Scholar 

  12. S. Song, P. Tsiakaras, Appl. Catal. B Environ. (2006). doi:10.1016/j.apcatb.2005.09.018

    Google Scholar 

  13. E. Antolini, J. Power Sources (2007). doi:10.1016/j.jpowsour.2007.04.009

    Google Scholar 

  14. S. Chen, M. Schell, Electrochim. Acta (1999). doi:10.1016/S0013-4686(99)00263-7

    Google Scholar 

  15. S. Chen, M. Schell, J. Electroanal. Chem. (1999). doi:10.1016/S0022-0728(99)00421-0

    Google Scholar 

  16. C. Xu, P.K. Shen, X. Ji, R. Zeng, Y. Liu, Electrochem. Commun. (2005). doi:10.1016/j.elecom.2005.09.015

    Google Scholar 

  17. Z.D. Wei, L.L. Li, Y.H. Luo, C. Yan, C.X. Sun, G.Z. Yin et al., J. Phys. Chem. B (2006). doi:10.1021/jp0651891

    Google Scholar 

  18. J.S. Spendelow, G.Q. Lu, P.J.A. Kenis, A. Wieckowski, J. Electroanal. Chem. (2004). doi:10.1016/j.jelechem.2004.01.018

    Google Scholar 

  19. S. Song, W. Zhou, Z. Liang, R. Cai, G. Sun, Q. Xin et al., Appl. Catal. B Environ. (2005). doi:10.1016/j.apcatb.2004.05.017

    Google Scholar 

  20. W.J. Zhou, S.Q. Song, W.Z. Li, Z.H. Zhou, G.Q. Sun, Q. Xin et al., J. Power Sources (2005). doi:10.1016/j.jpowsour.2004.08.003

    Google Scholar 

  21. C. Coutanceau, L. Demarconnay, C. Lamy, J.-M. Léger, J. Power Sources (2006). doi:10.1016/j.jpowsour.2005.08.035

    Google Scholar 

  22. W. Xiao, D. Wang, X.W. Lou, J. Phys. Chem. C (2010). doi:10.1021/jp909386d

    Google Scholar 

  23. F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, Chem. Mater. (2010). doi:10.1021/cm901698s

    Google Scholar 

  24. C. Shi, G.L. Zang, Z. Zhang, G.P. Sheng, Y.X. Huang, G.X. Zhao et al., Electrochim. Acta (2014). doi:10.1016/j.electacta.2014.03.150

    Google Scholar 

  25. C. Wei, L. Yu, C. Cui, J. Lin, C. Wei, N. Mathews et al., Chem. Commun. (Camb.) (2014). doi:10.1039/c4cc02781g

    Google Scholar 

  26. D.A.J. Rand, R. Woods, J. Electroanal. Chem. Interfacial Electrochem. (1972). doi:10.1016/S0022-0728(72)80308-5

    Google Scholar 

  27. P.J. Kulesza, W. Lu, L.R. Faulkner, J. Electroanal. Chem. (1992). doi:10.1016/0022-0728(92)80260-B

    Google Scholar 

  28. M. Tian, B.E. Conway, J. Electroanal. Chem. (2008). doi:10.1016/j.jelechem.2007.12.016

    Google Scholar 

  29. Y. Sugawara, A.P. Yadav, A. Nishikata, T. Tsuru, J. Electroanal. Chem. (2011). doi:10.1016/j.jelechem.2011.09.009

    Google Scholar 

  30. A. Kumar, D.A. Buttry, J. Phys. Chem. C (2013). doi:10.1021/jp408394h

    Google Scholar 

  31. S.A. Grigoriev, K.A. Dzhus, D.G. Bessarabov, P. Millet, Int. J. Hydrog. Energy (2014). doi:10.1016/j.ijhydene.2014.05.043

    Google Scholar 

  32. K.D. Snell, A.G. Keenan, Electrochim. Acta (1981). doi:10.1016/0013-4686(81)85119-5

    Google Scholar 

  33. J. Sobkowski, A. Wieckowski, J. Electroanal. Chem. Interfacial Electrochem. (1973). doi:10.1016/S0022-0728(73)80416-4

    Google Scholar 

  34. D.M. Novak, B.E. Conway, J. Chem. Soc. Faraday Trans. (1981). doi:10.1039/f19817702341

    Google Scholar 

  35. M.W. Breiter, Electrochim. Acta (1963). doi:10.1016/0013-4686(62)87047-9

    Google Scholar 

  36. K. Sashikata, Y. Matsui, K. Itaya, M.P. Soriaga, J. Phys. Chem. (1996). doi:10.1021/jp9620532

    Google Scholar 

  37. J.F. Rodriguez, T. Mebrahtu, M.P. Soriaga, J. Electroanal. Chem. Interfacial Electrochem. (1989). doi:10.1016/0022-0728(89)80164-0

    Google Scholar 

  38. J. Lipkowski, Z. Shi, A. Chen, B. Pettinger, C. Bilger, Electrochim. Acta (1998). doi:10.1016/S0013-4686(98)00028-0

    Google Scholar 

  39. Y.-G. Kim, J.H. Baricuatro, M.P. Soriaga, D. Wayne Suggs, J. Electroanal. Chem. (2001). doi:10.1016/S0022-0728(01)00514-9

    Google Scholar 

  40. J.A. Schimpf, J.B. Abreu, M.P. Soriaga, J. Electroanal. Chem. (1994). doi:10.1016/0022-0728(93)02916-6

    Google Scholar 

  41. A. Kumar, D.A. Buttry, J. Phys. Chem. C (2015). doi:10.1021/acs.jpcc.5b03361

    Google Scholar 

  42. W. Niu, L. Zhang, G. Xu, ACS Nano (2010). doi:10.1021/nn100093y

    Google Scholar 

  43. S.E. Lohse, N.D. Burrows, L. Scarabelli, L.M. Liz-Marzán, C.J. Murphy, Chem. Mater. (2014). doi:10.1021/cm402384j

    Google Scholar 

  44. J. Zhang, C. Feng, Y. Deng, L. Liu, Y. Wu, B. Shen et al., Chem. Mater. (2014). doi:10.1021/cm403591g

    Google Scholar 

  45. R. Long, S. Zhou, B.J. Wiley, Y. Xiong, Chem. Soc. Rev. (2014). doi:10.1039/c4cs00136b

    Google Scholar 

  46. Y. Xiong, H. Cai, B.J. Wiley, J. Wang, M.J. Kim, Y. Xia, J. Am. Chem. Soc. (2007). doi:10.1021/ja0688023

    Google Scholar 

  47. C.F. Zinola, A.M.C. Luna, J. Colloid Interface Sci. (1999). doi:10.1006/jcis.1998.5901

    Google Scholar 

  48. T.J. Schmidt, U.A. Paulus, H.A. Gasteiger, R.J. Behm, J. Electroanal. Chem. (2001). doi:10.1016/S0022-0728(01)00499-5

    Google Scholar 

  49. T.M. Arruda, B. Shyam, J.M. Ziegelbauer, S. Mukerjee, D.E. Ramaker, J. Phys. Chem. C (2008). doi:10.1021/jp8067359

    Google Scholar 

  50. G. Denuault, C. Milhano, D. Pletcher, Phys. Chem. Chem. Phys. (2005). doi:10.1039/b508835f

    Google Scholar 

  51. Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Electrochim. Acta (2009). doi:10.1016/j.electacta.2008.10.034

    Google Scholar 

  52. J. Liu, J. Ye, C. Xu, S.P. Jiang, Y. Tong, Electrochem. Commun. (2007). doi:10.1016/j.elecom.2007.06.036

    Google Scholar 

  53. M. Grdeń, J. Kotowski, A. Czerwiński, J. Solid State Electrochem. (2000). doi:10.1007/s100080050204

    Google Scholar 

  54. M.-C. Jeong, J. Electrochem. Soc. (1993). doi:10.1149/1.2220750

    Google Scholar 

  55. S. Ghosh, H. Remita, P. Kar, S. Choudhury, S. Sardar, P. Beaunier et al., J. Mater. Chem. A (2015). doi:10.1039/C5TA00923E

    Google Scholar 

  56. S. Sen Gupta, J. Datta, J. Power Sources (2005). doi:10.1016/j.jpowsour.2005.01.066

    Google Scholar 

  57. M. Arenz, V. Stamenkovic, T.J. Schmidt, K. Wandelt, P.N. Ross, N.M. Markovic, Surf. Sci. (2003). doi:10.1016/S0039-6028(02)02456-1

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant CHE-0957122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Buttry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Buttry, D.A. Influence of Halide Ions on Anodic Oxidation of Ethanol on Palladium. Electrocatalysis 7, 201–206 (2016). https://doi.org/10.1007/s12678-015-0298-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0298-2

Keywords

Navigation