Skip to main content
Log in

The Formation of Surface Oxides on Nickel in Oxalate-Containing Alkaline Media

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electrochemical formation of α-Ni(OH)2 and NiOOH in the presence of adsorbed oxalate in alkaline media is studied under well-controlled experimental conditions that include the variation of the system temperature (T = −10 to 20 °C), the scan rate (v = 20, 150, and 200 mV s−1), and the concentration of supporting electrolyte (0.10 and 0.50 M KOH). The studies are carried out using cyclic voltammetry (CV) with polycrystalline bulk nickel and nickel foams. In situ infrared spectroscopy with voltammetry confirms the adsorption of oxalate to the surface of nickel in the 0.10 to 0.30 V potential window, concurrent with the formation of the α-Ni(OH)2 species. The presence of oxalate in the system increases the charge density (Q) for the formation of both the α-Ni(OH)2 and NiOOH surface oxides. The Q values calculated under various conditions indicate that the presence of oxalate in the system encourages the formation of a full single monolayer (ML) of NiOOH in the first CV scan. Measurements carried out at room temperature demonstrate that an increase in v decreases the Q values for NiOOH in the presence of oxalate to minimum values achieved at v ≥150 mV s−1. An increase of KOH concentration results in the formation of a thicker layer of NiOOH both in the presence and absence of oxalate. The Q values of NiOOH reduction in conditions that favor the formation of one complete monolayer of NiOOH are used to calculate the specific surface areas of open-cell nickel foams. The calculation of electrochemical surface area using this method is discussed and evaluated with respect to calculations based on the charge of α-Ni(OH)2 formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Fleischmann, M. Korinek, K. Pletcher, J. Chem. Soc. Perkin Trans. 2, 1396 (1972)

    Article  Google Scholar 

  2. P.M. Robertson, J. Electroanal. Chem. Interfacial Electrochem. 111, 97 (1980)

    Article  CAS  Google Scholar 

  3. J.R.J. Motheo, A.J. Machado, S.A.S. Rabelo, F.J.B. Santos, J. Braz. Chem. Soc. 5, 161 (1994)

    Article  CAS  Google Scholar 

  4. A.F.B. Barbosa, V.L. Oliveira, J. van Drunen, G. Tremiliosi-Filho, J. Electroanal. Chem. 746, 31 (2015)

    Article  CAS  Google Scholar 

  5. J. van Drunen, T.W. Napporn, B. Kokoh, G. Jerkiewicz, J. Electroanal. Chem. 716, 120 (2013)

    Article  Google Scholar 

  6. H. Bode, K. Dehmelt, J. Witte, Electrochim. Acta 11, 1079 (1966)

    Article  CAS  Google Scholar 

  7. F. Hahn, B. Beden, M.J. Croissant, C. Lamy, Electrochim. Acta 31, 335 (1986)

    Article  CAS  Google Scholar 

  8. R. S̄impraga, B.E. Conway, J. Electroanal. Chem. Interfacial Electrochem. 280, 341 (1990)

    Article  Google Scholar 

  9. M. Grdeń, K. Klimek, J. Electroanal. Chem. 581, 122 (2005)

    Article  Google Scholar 

  10. M. Alsabet, M. Grden, G. Jerkiewicz, Electrocatalysis 5, 136 (2014)

    Article  CAS  Google Scholar 

  11. P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, A. De Guibert, J. Power Sources 8, 229 (1982)

    Article  CAS  Google Scholar 

  12. D.S. Hall, C. Bock, B.R. Macdougall, J. Electrochem. Soc. 160, F235 (2013)

    Article  CAS  Google Scholar 

  13. M. Grdeń, M. Alsabet, G. Jerkiewicz, ACS Appl. Mater. Interfaces 4, 3012 (2012)

    Article  Google Scholar 

  14. J. Van Drunen, B. Kinkead, M.C.P. Wang, E. Sourty, B.D. Gates, G. Jerkiewicz, ACS Appl. Mater. Interfaces 5, 6712 (2013)

    Article  Google Scholar 

  15. C.A. Melendres, M. Pankuch, J. Electroanal. Chem. 333, 103 (1992)

    Article  CAS  Google Scholar 

  16. J.W. Montupally, S. Streinz, C.C. Weidner, J. Electrochem. Soc. 142, 1401 (1995)

    Article  Google Scholar 

  17. M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrocatalysis 6, 60 (2015)

    Article  CAS  Google Scholar 

  18. D.S. Hall, D.J. Lockwood, C. Bock, B.R. Macdougall, Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 20140792 (2015)

    Article  Google Scholar 

  19. R.E. Carbonio, V.A. Macagno, M.C. Giordano, J.R. Vilche, A.J. Arvia, J. Electrochem. Soc. 129, 983 (1982)

    Article  CAS  Google Scholar 

  20. M. Alsabet, M. Grdeń, G. Jerkiewicz, J. Electroanal. Chem. 589, 120 (2006)

    Article  CAS  Google Scholar 

  21. L.H. Dall’ Antonia, G. Tremiliosi-Filho, G. Jerkiewicz, J. Electroanal. Chem. 502, 72 (2001)

    Article  Google Scholar 

  22. G. Tremiliosi-Filho, L.H. Dall’ Antonia, G. Jerkiewicz, J. Electroanal. Chem. 578, 1 (2005)

    Article  CAS  Google Scholar 

  23. M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrocatalysis 2, 317 (2011)

    Article  CAS  Google Scholar 

  24. M. Opallo, A. Prokopowicz, Electrochem. Commun. 5, 737 (2003)

    Article  CAS  Google Scholar 

  25. A. Visintin, W.E. Triaca, A.J. Arvia, J. Appl. Electrochem. 26, 493 (1996)

    Article  CAS  Google Scholar 

  26. D.S. Hall, C. Bock, B.R. MacDougall, J. Electrochem. Soc. 161, H787 (2014)

    Article  Google Scholar 

  27. S. Trasatti, O.A. Petrii. 327, 353 (1992)

  28. G. Jarzabek, Z. Borkowska, Electrochim. Acta 42, 2915 (1997)

    Article  CAS  Google Scholar 

  29. G. Vertes, G. Horanyi, Electroanal. Chem. Interfacial Electrochem. 52, 47 (1974)

    Article  CAS  Google Scholar 

  30. J. van Drunen, B.K. Pilapil, Y. Makonnen, D. Beauchemin, B. D. Gates, G. Jerkiewicz. ACS Appl. Mater. Interfaces (2014).

  31. H. Angerstein-Kozlowska. Compr. Treatise Electrochem. 15 (1984).

  32. J.F. Gomes, G. Tremiliosi-Filho, Electrocatalysis 2, 96 (2011)

    Article  CAS  Google Scholar 

  33. T. Iwasita, F. Nart, Prog. Surf. Sci. 55, 271 (1997)

    Article  CAS  Google Scholar 

  34. B.E. Conway, L. Bai. J. Chem. Soc. Faraday Trans. 1 81, 1841 (1985).

  35. S.A.S. Machado, L.A. Avaca, Electrochim. Acta 39, 1385 (1994)

    Article  CAS  Google Scholar 

  36. B. Beden, D. Floner, J.M. Léger, C. Lamy, Surf. Sci. Lett. 162, 822 (1985)

    Article  CAS  Google Scholar 

  37. D.S. Hall, D.J. Lockwood, S. Poirier, C. Bock, B.R. MacDougall, J. Phys. Chem. A 116, 6771 (2012)

    Article  CAS  Google Scholar 

  38. B. Gao, Z.-F. Liu, J. Phys. Chem. A 109, 9104 (2005)

    Article  CAS  Google Scholar 

  39. R.S. McEwen, J. Phys. Chem. 76, 1782 (1971)

    Article  Google Scholar 

  40. K.I. Pandya, W.E. O’Grady, D.A. Corrigan, J. McBreen, R.W. Hoffman, J. Phys. Chem. 94, 21 (1990)

    Article  CAS  Google Scholar 

  41. S. Gilman, Electrochim. Acta 65, 141 (2012)

    Article  CAS  Google Scholar 

  42. S. Beyhan, J.-M. Léger, F. Kadırgan, Appl. Surf. Sci. 321, 426 (2014)

    Article  CAS  Google Scholar 

  43. K. Ito, H.J. Bernstein, Can. J. Chem. 34, 170 (1956)

    Article  CAS  Google Scholar 

  44. S. Fiameni, I. Herraiz-Cardona, M. Musiani, V. Pérez-Herranz, L. Vázquez-Gómez, E. Verlato, Int. J. Hydrog. Energy 37, 10507 (2012)

    Article  CAS  Google Scholar 

  45. E. Verlato, S. Cattarin, N. Comisso, A. Gambirasi, M. Musiani, L. Vázquez-Gómez, Electrocatalysis 3, 48 (2012)

    Article  CAS  Google Scholar 

  46. B. Pierozynski, T. Mikolajczyk, M. Turemko, Electrocatalysis 6, 173 (2014)

    Article  Google Scholar 

  47. W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, X. Sun, Analyst 138, 417 (2012)

    Article  Google Scholar 

  48. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Adv. Funct. Mater. 22, 4592 (2012)

    Article  CAS  Google Scholar 

  49. Q. Wang, X. Wang, B. Liu, G. Yu, X. Hou, D. Chen, G. Shen, J. Mater. Chem. A 1, 2468 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). A.F.B. Barbosa acknowledges financial support from the CAPES, and J van Drunen acknowledges financial support from the FAPESP (process number 2013/22277-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julia van Drunen or Germano Tremiliosi-Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Drunen, J., Barbosa, A.F.B. & Tremiliosi-Filho, G. The Formation of Surface Oxides on Nickel in Oxalate-Containing Alkaline Media. Electrocatalysis 6, 481–491 (2015). https://doi.org/10.1007/s12678-015-0268-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0268-8

Keywords

Navigation