Skip to main content
Log in

Harnessing Nanotechnology for Idarubicin Delivery in Cancer Therapy: Current Approaches and Future Perspectives

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The global burden of cancer, which constitutes approximately one-sixth of all worldwide mortalities, poses a significant challenge for scientific researchers in their pursuit of effective therapeutic interventions. This discourse delves into the potential of idarubicin (IDA), an anthracycline antibiotic with pronounced lipophilicity, known for its accelerated nuclear sequestration, enhanced cellular permeability, and potent cytotoxicity. Despite IDA’s demonstrated effectiveness in combating a spectrum of cancers, its therapeutic utility is significantly hampered by the onset of deleterious side effects such as cardiotoxicity and myelosuppression. The manuscript provides an exhaustive analysis of novel methodologies that have been developed to circumvent the impediments associated with IDA delivery, encompassing lipid-based nanoparticles (NPs), polymeric nanocarriers, carbonaceous nanostructures, and inorganic NPs. It examines key parameters such as drug release, encapsulation efficacy, loading proficiency, zeta potential, along with in vivo and in vitro characterizations, offering a comprehensive assessment of the advancements in disparate delivery systems for IDA. Furthermore, the manuscript probes into co-delivery formulations of IDA in conjunction with other anti-cancer agents, underscoring their promising implications for future oncological therapy. The discourse also highlights the paucity of empirical research in this domain. The revelations gleaned from this review are anticipated to make a substantial contribution to the genesis of innovative strategies for future oncological treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

Abbreviations

4-DMDR:

4-Demethoxydaunorubicin

A549:

Lung carcinoma epithelial cells

AF9:

5-[2,4-Bis(azanyl)pyrimidin-5-yl]oxy-2-methoxy-4-propan-2-yl-benzenesulfonamide

AML:

Acute myeloid leukemia

AuMPn:

Gold shell-coated magnetic polyester nanoparticles

BILM:

Biodegradable idarubicin-loaded microsphere

BuCy:

Busulphan and cyclophosphamide combination

C57BL/6:

C57 black 6

Caco-2:

Cancer coli-2

CD:

β-Cyclodextrin

CD8:

Cluster of differentiation 8

CR:

Complete remission

CNT:

Carbon nanotube

DDC:

Dual drug conjugate

DLS :

Dynamic light scattering

DNA:

Deoxyribonucleic acid

DNR:

Daunorubicin

DSPC:

Distearoylphosphatidylcholine

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DPV:

Differential pulse voltammetry

DXR:

Doxorubicin

D-pen:

D-penicillamine

DFT:

Density functional theory

DL:

Drug loading

EDTA:

Ethylenediaminetetraacetic acid

EE:

Encapsulation efficiency

eNOS:

Endothelial nitric oxide synthase

FA:

Folic acid

GDY:

Graphydine

GDYO:

Graphydine oxide

GFP:

Green fluorescent protein

h:

Hour

HBR:

Hyperbranched resin

HCC:

Hepatocellular carcinoma

HER:

Human epidermal growth factor receptor

HPLC:

High-performance liquid chromatography

HT:

Hyperthermia

HsAFr:

Horse spleen apoferritin

IC50:

Half maximal inhibitory concentration

IDA:

Idarubicin

IgG4:

Immunoglobulin G4

M:

Molar

MCF-7:

Michigan Cancer Foundation-7

MD:

Molecular dynamics

MDR:

Multi-drug resistance

MLL:

Mixed lineage leukemia

MMA:

Methyl methacrylate

MNP:

Magnetic nanoparticle

m-PEG-PLGA:

Methoxy poly(ethylene glycol)-b-poly(L-lactide-co-glycolide)

MPBH:

4-(4-N-maleimidophenyl)butyric acid hydrazide

MPE:

Maleate-polyester

mTHPP:

5,10,15,20-Tetrakis(meso-hydroxyphenyl)porphyrin

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NCI-H460:

Human non-small cell lung carcinoma

NP:

Nanoparticle

NLCs:

Nanostructured lipid carriers

NHL:

Non-Hodgkin’s lymphoma

NT:

Normothermia

PBS:

Phosphate buffered saline

PD1:

Programmed cell death protein 1

PEG :

Polyethylene glycol

PGA:

Poly(glycolic acid)

PSS:

Poly(styrene sulfonate)

POPC:

Glycerolphospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

ptPVA:

Pteroic acid enhanced polyvinyl alcohol

PDT:

Photodynamic therapy

PTT:

Photothermal therapy

PGA:

Poly (α) L-glutamic acid

SCARA5:

Scavenger receptor class A member 5

SDDS:

Smart drug delivery system

SLNs:

Solid-lipid NPs

TACE:

Transarterial chemoembolization

TAM:

Tamoxifen

TfR1:

Transferrin receptor protein 1

TGI:

Tumor growth inhibition

tBA:

Tert-butyl acrylate

TEM:

Transmission electron microscopy

UV:

Ultraviolet

vdW:

Van der Waals

References

  1. La Vecchia, S. and C. Sebastián. Metabolic pathways regulating colorectal cancer initiation and progression. in Seminars in cell & developmental biology. 2020. Elsevier.

  2. Sathishkumar, K., et al. (2022). Cancer incidence estimates for 2022 & projection for 2025: Result from National Cancer Registry Programme, India. The Indian Journal of Medical Research, 156(4&5), 598–607.

    Google Scholar 

  3. Wang, W., et al. (2023). Curcumin in cancer therapy: Exploring molecular mechanisms and overcoming clinical challenges. Cancer Letters, 570, 216332.

  4. Lazarus, E., & Bays, H. E. (2022). Cancer and obesity: An obesity medicine association (OMA) clinical practice statement (CPS) 2022. Obesity Pillars, 3, 100026.

    Article  Google Scholar 

  5. Ali, H., et al. (2023). Emergence of nanohybrids in hormonal cancer-targeted therapy. Hormone related cancer mechanistic and nanomedicines: Challenges and prospects (pp. 71–88). Springer.

    Google Scholar 

  6. Bhattacharya, S., et al. (2023). Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sciences, 332, 122110.

  7. Qi, K., Sun, B., Liu, S.-Y., & Zhang, M. (2023). Research progress on carbon materials in tumor photothermal therapy. Biomedicine & Pharmacotherapy, 165, 115070.

    Article  Google Scholar 

  8. Lu, Y., Bai, X., & Pan, C. (2024). Impact of exercise interventions on quality of life and depression in lung cancer patients: A systematic review and meta-analysis. International Journal of Psychiatry in Medicine, 59(2), 199–217.

    Article  Google Scholar 

  9. Cheville, A., Smith, S., Barksdale, T., & Asher, A. (2020). Cancer Rehabilitation. In Braddom's Physical Medicine and Rehabilitation (pp. 568–593.e7). Elsevier.

  10. Mengarda, A. C., Iles, B., Longo, J. P. F., & de Moraes, J. (2023). Recent approaches in nanocarrier-based therapies for neglected tropical diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 15(2), e1852.

    Google Scholar 

  11. Craig, M., et al. (2020). Engineering in medicine to address the challenge of cancer drug resistance: From micro-and nanotechnologies to computational and mathematical modeling. Chemical Reviews, 121(6), 3352–3389.

    Article  Google Scholar 

  12. Fathi Karkan, S., Davaran, S., & Akbarzadeh, A. (2019). Cisplatin-loaded superparamagnetic nanoparticles modified with PCL-PEG copolymers as a treatment of A549 lung cancer cells. Nanomedicine Research Journal, 4(4), 209–219.

    Google Scholar 

  13. Kumar, M., et al. (2023). Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations – A review. JCIS Open. 12. 100095.

  14. Fatima Qizilbash, F., et al. (2023). Nanotechnology revolutionises breast cancer treatment: Harnessing lipid-based nanocarriers to combat cancer cells. Journal of Drug Targeting, 31(8), 794–816.

    Article  Google Scholar 

  15. Rabiee, N., et al. (2020). Nanotechnology-assisted microfluidic systems: From bench to bedside. Nanomedicine, 16(3), 237–258.

    Article  Google Scholar 

  16. Kong, X., et al. (2023). Advances of medical nanorobots for future cancer treatments. Journal of Hematology & Oncology, 16(1), 74.

    Article  Google Scholar 

  17. Abdelkader, H., et al. (2021). Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Advanced Drug Delivery Reviews, 177, 113957.

    Article  Google Scholar 

  18. Azizi, M., et al. (2023). Multifunctional plant virus nanoparticles: An emerging strategy for therapy of cancer. Wiley interdisciplinary reviews. Nanomedicine and Nanobiotechnology, 15(6), e1872.

  19. Handa, M., et al. (2021). Recent advances in lipid-engineered multifunctional nanophytomedicines for cancer targeting. Journal of Controlled Release, 340, 48–59.

    Article  Google Scholar 

  20. Wang, G., et al. (2020). Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Materials Today Bio, 6, 100055.

    Article  Google Scholar 

  21. Delbreil, P., Rabanel, J.-M., Banquy, X., & Brambilla, D. (2022). Therapeutic nanotechnologies for Alzheimer’s disease: A critical analysis of recent trends and findings. Advanced Drug Delivery Reviews, 187, 114397.

    Article  Google Scholar 

  22. Zhou, F., Peterson, T., Fan, Z., & Wang, S. (2023). The commonly used stabilizers for phytochemical-based nanoparticles: Stabilization effects, mechanisms, and applications. Nutrients, 15(18), 3881.

    Article  Google Scholar 

  23. Fathi-Karkan, S., et al. (2023). Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. European Journal of Medicinal Chemistry, 259, 115676.

  24. Fathi-Karkan, S., Ghavidel-Kenarsari, F., & Maleki-Baladi, R. (2022). Pullulan as promoting endothelialization capacity of electrospun PCL-PU scaffold. The International Journal of Artificial Organs, 45(12), 1013–1020.

    Article  Google Scholar 

  25. Sahu, T., et al. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487.

    Article  Google Scholar 

  26. Leso, V., et al. (2022). Exposure to antineoplastic drugs in occupational settings: A systematic review of biological monitoring data. International Journal of Environmental Research and Public Health, 19(6), 3737.

    Article  Google Scholar 

  27. Abbas, A. A., & AlAzmi, A. A. M. (2019). Anthracycline-induced cardiac toxicity: A clinical review. Indian Journal of Medical and Paediatric Oncology, 40(04), 465–475.

    Article  Google Scholar 

  28. Zheng, Z., et al. (2023). Idarubicin-loaded biodegradable microspheres enhance sensitivity to anti-PD1 immunotherapy in transcatheter arterial chemoembolization of hepatocellular carcinoma. Acta Biomaterialia, 157, 337–351.

    Article  Google Scholar 

  29. Arcamone, F., et al. (1976). Synthesis and antitumor activity of 4-demethoxydaunorubicin, 4-demethoxy-7, 9-diepidaunorubicin, and their anomers. Cancer Treatment Reports, 60, 829–834.

    Google Scholar 

  30. Borchmann, P., Hübel, K., Schnell, R., & Engert, A. (1997). Idarubicin: A brief overview on pharmacology and clinical use. International Journal of Clinical Pharmacology and Therapeutics, 35(2), 80–83.

    Google Scholar 

  31. Gotzhein, F. (2021). Tracking clonal composition of stem cell transplants by genetic barcoding and implementation of a targeted barcoding procedure [Doctoral dissertation, University of Hamburg]. ediss.sub.hamburg.

  32. Li, X., Xu, S., Tan, Y., & Chen, J. (2015). The effects of idarubicin versus other anthracyclines for induction therapy of patients with newly diagnosed leukaemia. The Cochrane Database of Systematic Reviews, (6), CD010432.

  33. McGowan, J. V., et al. (2017). Anthracycline chemotherapy and cardiotoxicity. Cardiovascular Drugs and Therapy, 31, 63–75.

    Article  Google Scholar 

  34. Das, S., et al. (2022). Aptamers functionalized biomolecular nano-vehicles for applications in cancer diagnostics & therapeutics. Applied NanoMedicine, 2(2), 360–360.

    Google Scholar 

  35. Tsuruo, T., Oh-Hara, T., Sudo, Y., & Naito, M. (1993). Antitumor activity of idarubicin, a derivative of daunorubicin, against drug sensitive and resistant P388 leukemia. Anticancer Research, 13(2), 357–361.

    Google Scholar 

  36. Kim, J. S., et al. (2022). Anthracycline derivatives inhibit cardiac CYP2J2. Journal of Inorganic Biochemistry, 229, 111722.

    Article  Google Scholar 

  37. Jerjis, S., et al. (1998). Idarubicin to intensify the conditioning regimens of autologous bone marrow transplantation for patients with acute myeloid leukemia in first complete remission. Bone Marrow Transplantation, 22(1), 13–19.

    Article  Google Scholar 

  38. Ravandi, F., et al. (2019). Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: A single-arm, phase 2 study. The Lancet Haematology, 6(9), e480–e488.

    Article  Google Scholar 

  39. Sherif, H. A., et al. (2021). Treatment outcome of doxorubicin versus idarubicin in adult acute myeloid leukemia. Leukemia Research Reports, 16, 100272.

    Article  Google Scholar 

  40. Foroughi, M. M., & Jahani, S. (2022). Investigation of a high-sensitive electrochemical DNA biosensor for determination of idarubicin and studies of DNA-binding properties. Microchemical Journal, 179, 107546.

    Article  Google Scholar 

  41. Rauf, S., et al. (2005). Electrochemical approach of anticancer drugs–DNA interaction. Journal of Pharmaceutical and Biomedical Analysis, 37(2), 205–217.

    Article  Google Scholar 

  42. Lachatre, F., et al. (2000). Simultaneous determination of four anthracyclines and three metabolites in human serum by liquid chromatography–electrospray mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 738(2), 281–291.

    Article  Google Scholar 

  43. Hu, Q., Hu, G., Zhou, T., & Fang, Y. (2003). Determination of dissociation constants of anthrocycline by capillary zone electrophoresis with amperometric detection. Journal of Pharmaceutical and Biomedical Analysis, 31(4), 679–684.

    Article  Google Scholar 

  44. Kuhlmann, O., Hofmann, S., & Weiss, M. (1999). Determination of idarubicin and idarubicinol in rat plasma using reversed-phase high-performance liquid chromatography and fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 728(2), 279–282.

    Article  Google Scholar 

  45. Badea, I., et al. (2005). A HPLC method for the simultaneous determination of seven anthracyclines. Journal of Pharmaceutical and Biomedical Analysis, 39(1–2), 305–309.

    Article  Google Scholar 

  46. Kurbanoglu, S., et al. (2013). Electrochemical investigations of the anticancer drug idarubicin using multiwalled carbon nanotubes modified glassy carbon and pyrolytic graphite electrodes. Electroanalysis, 25(6), 1473–1482.

    Article  Google Scholar 

  47. Li, W., Jiang, Y., & Lu, J. (2023). Nanotechnology-enabled immunogenic cell death for improved cancer immunotherapy. International Journal of Pharmaceutics, 634, 122655.

  48. Behravan, N., et al. (2022). Lipid-based nanoparticulate delivery systems for HER2-positive breast cancer immunotherapy. Life Sciences, 291, 120294.

    Article  Google Scholar 

  49. Liang, B., et al. (2019). Idarubicin-loaded methoxy poly(ethylene glycol)-b-poly(l-lactide-co-glycolide) nanoparticles for enhancing cellular uptake and promoting antileukemia activity. International Journal of Nanomedicine, 14, 543–556.

    Article  Google Scholar 

  50. Najafi, F., Pourali, S., & Kamran, A. (2021). Comparison of thermodynamic functions of idarubicin cancer drug interaction with carbon nanotube: QM/MM studies. International Journal of New Chemistry, 8(1), 30–40.

    Google Scholar 

  51. Alavi, M., & Varma, R. S. (2020). Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformulations. International Journal of Biological Macromolecules, 164, 2197–2203.

    Article  Google Scholar 

  52. Ashrafizadeh, M., et al. (2021). Hyaluronic acid-based nanoplatforms for doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydrate Polymers, 272, 118491.

    Article  Google Scholar 

  53. Tapeinos, C., Battaglini, M., & Ciofani, G. (2017). Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. Journal of Controlled Release, 264, 306–332.

    Article  Google Scholar 

  54. Yingchoncharoen, P., Kalinowski, D. S., & Richardson, D. R. (2016). Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacological Reviews, 68(3), 701–787.

    Article  Google Scholar 

  55. Sheoran, S., Arora, S., Samsonraj, R., & Govindaiah, P. (2022). Lipid-based nanoparticles for treatment of cancer. Heliyon, 8(5), e09403.

    Article  Google Scholar 

  56. Mitchell, M. J., et al. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101–124.

    Article  Google Scholar 

  57. Xu, Q., et al. (2023). Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 15(1), e1842.

    Google Scholar 

  58. Sarangi, B., et al. (2019). Solid lipid nanoparticles: A potential approach for drug delivery system. Nanoscience & Nanotechnology-Asia, 9(2), 142–156.

    Article  Google Scholar 

  59. Zara, G. P., et al. (2002). Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. Journal of Pharmaceutical Sciences, 91(5), 1324–1333.

    Article  Google Scholar 

  60. Sermsappasuk, P., Hrynyk, R., Gubernator, J., & Weiss, M. (2008). Reduced uptake of liposomal idarubicin in the perfused rat heart. Anti-cancer Drugs, 19(7), 729–732.

    Article  Google Scholar 

  61. Iqbal, N., & Iqbal, N. (2014). Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Molecular Biology International, 2014, 852748.

  62. Amin, M., et al. (2018). Specific delivery of idarubicin to HER2-positive breast cancerous cell line by trastuzumab-conjugated liposomes. Journal of Drug Delivery Science and Technology, 47, 209–214.

    Article  Google Scholar 

  63. Ma, P., et al. (2009). Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. Journal of Biomedical Nanotechnology, 5(2), 151–161.

    Article  Google Scholar 

  64. Tang, Q., et al. (2018). Stimuli responsive nanoparticles for controlled anti-cancer drug release. Current Medicinal Chemistry, 25(16), 1837–1866.

    Article  Google Scholar 

  65. Lu, T., et al. (2015). Formulation and optimization of idarubicin thermosensitive liposomes provides ultrafast triggered release at mild hyperthermia and improves tumor response. Journal of Controlled Release, 220, 425–437.

    Article  Google Scholar 

  66. Wang, Y., Chen, L., Ding, Y., & Yan, W. (2012). Oxidized phospholipid based pH sensitive micelles for delivery of anthracyclines to resistant leukemia cells in vitro. International Journal of Pharmaceutics, 422(1–2), 409–417.

    Article  Google Scholar 

  67. Dos Santos, N., et al. (2005). Substantial increases in idarubicin plasma concentration by liposome encapsulation mediates improved antitumor activity. Journal of Controlled Release, 105(1–2), 89–105.

    Article  Google Scholar 

  68. Gubernator, J., et al. (2010). The encapsulation of idarubicin within liposomes using the novel EDTA ion gradient method ensures improved drug retention in vitro and in vivo. Journal of Controlled Release, 146(1), 68–75.

    Article  Google Scholar 

  69. Dos Santos, N., et al. (2002). Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1561(2), 188–201.

    Article  Google Scholar 

  70. Caro, C., et al. (2022). Nanomaterials loaded with Quercetin as an advanced tool for cancer treatment. Journal of Drug Delivery Science and Technology, 78, 103938.

  71. Cheng, R., et al. (2013). Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 34(14), 3647–3657.

    Article  Google Scholar 

  72. Prabhu, R. H., Patravale, V. B., & Joshi, M. D. (2015). Polymeric nanoparticles for targeted treatment in oncology: current insights. International Journal of Nanomedicine, 10, 1001–1018.

    Google Scholar 

  73. Abad, F., et al. (2023). Chitosan-Carbon nanotube Composite: An approach for controlled release of Quercetin, Modified with carboxymethyl Cellulose, for potential Anti-Cancer therapy. Inorganic Chemistry Communications, 158, 111621.

  74. Jain, R., et al. (2011). Enhanced cellular delivery of idarubicin by surface modification of propyl starch nanoparticles employing pteroic acid conjugated polyvinyl alcohol. International Journal of Pharmaceutics, 420(1), 147–155.

    Article  Google Scholar 

  75. Güç, E., Gündüz, G., & Gündüz, U. (2010). Fatty acid based hyperbranched polymeric nanoparticles for hydrophobic drug delivery. Drug Development and Industrial Pharmacy, 36(10), 1139–1148.

    Article  Google Scholar 

  76. Minotti, G., et al. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological reviews, 56(2), 185–229.

    Article  Google Scholar 

  77. Zhang, Y., Li, J., & Pu, K. (2022). Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials, 291, 121906.

  78. Das, B. C., et al. (2023). Stimuli-responsive boron-based materials in drug delivery. International Journal of Molecular Sciences, 24(3), 2757.

    Article  Google Scholar 

  79. Wadhwa, S., & Mumper, R. J. (2012). Polypeptide conjugates of d-penicillamine and idarubicin for anticancer therapy. Journal of Controlled Release, 158(2), 215–223.

    Article  Google Scholar 

  80. Blaudszun, A.-R., et al. (2014). Polyester-idarubicin nanoparticles and a polymer-photosensitizer complex as potential drug formulations for cell-mediated drug delivery. International Journal of Pharmaceutics, 474(1–2), 70–79.

    Article  Google Scholar 

  81. Nafee, N., et al. (2015). Cyclodextrin-based star polymers as a versatile platform for nanochemotherapeutics: Enhanced entrapment and uptake of idarubicin. Colloids and Surfaces B: Biointerfaces, 129, 30–38.

    Article  Google Scholar 

  82. Gunduz, U., et al. (2014). Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomedicine & Pharmacotherapy, 68(6), 729–736.

    Article  Google Scholar 

  83. Rafipour, R., Mousavi, A., & Mansouri, K. (2022). Apoferritin nanocages for targeted delivery of idarubicin against breast cancer cells. Biotechnology and Applied Biochemistry, 69(3), 1061–1067.

    Article  Google Scholar 

  84. Tang, L., et al. (2021). Insights on functionalized carbon nanotubes for cancer theranostics. Journal of Nanobiotechnology, 19, 1–28.

    Article  Google Scholar 

  85. Dehdashtian, S., Behbahanian, N., Mohammadi Taherzadeh, K., & Hashemi, B. (2019). Development of electrochemical sensor based on multiwall carbon nanotube for determination of anticancer drug idarubicin in biological samples. Advances in Nanochemistry, 1(1), 22–28.

    Google Scholar 

  86. Chandra, K., Dutta, S., Kolya, H., & Kang, C.-W. (2023). Structural aspect of hydroxyethyl-starch–anticancer-drug-conjugates as state-of-the-art drug carriers. Scientia Pharmaceutica, 91(3), 32.

    Article  Google Scholar 

  87. Matyszewska, D. (2020). The influence of charge and lipophilicity of daunorubicin and idarubicin on their penetration of model biological membranes–Langmuir monolayer and electrochemical studies. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(2), 183104.

    Article  Google Scholar 

  88. Shahabi, M., & Raissi, H. (2021). The transport of idarubicin therapeutic agent using a novel graphene sheet as a drug delivery platform through a biomembrane. Journal of Molecular Liquids, 323, 115050.

    Article  Google Scholar 

  89. Lu, T., et al. (2021). Externally triggered smart drug delivery system encapsulating idarubicin shows superior kinetics and enhances tumoral drug uptake and response. Theranostics, 11(12), 5700.

    Article  Google Scholar 

  90. Shahabi, M., & Raissi, H. (2020). Two dimensional porous frameworks of graphyne family as therapeutic delivery vehicles for Idarubicin biomolecule in silico: Density functional theory and molecular dynamics simulation. Journal of Molecular Liquids, 319, 114334.

    Article  Google Scholar 

  91. Li, C., et al. (2022). Molecular recognition-driven supramolecular nanoassembly of a hydrophobic uracil prodrug and hydrophilic cytarabine for precise combination treatment of solid and non-solid tumors. Nanoscale Horizons, 7(2), 235–245.

    Article  Google Scholar 

  92. Pérez-Ruiz, T., Martínez-Lozano, C., Sanz, A., & Bravo, E. (2001). Simultaneous determination of doxorubicin, daunorubicin, and idarubicin by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis, 22(1), 134–138.

    Article  Google Scholar 

  93. Iland, H. J., et al. (2012). All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood, The Journal of the American Society of Hematology, 120(8), 1570–1580.

    Google Scholar 

  94. Iland, H., et al. (2012). Results of the APML3 trial incorporating all-trans-retinoic acid and idarubicin in both induction and consolidation as initial therapy for patients with acute promyelocytic leukemia. Haematologica, 97(2), 227.

    Article  Google Scholar 

  95. Guiu, B., et al. (2015). Idarubicin-loaded ONCOZENE drug-eluting embolic agents for chemoembolization of hepatocellular carcinoma: In vitro loading and release and in vivo pharmacokinetics. Journal of Vascular and Interventional Radiology, 26(2), 262–270.

    Article  Google Scholar 

  96. Meng, R. (2016). Multifunctional gold nanoshell-coated magnetic nanoparticles: preparation, characterization, two-photon optical properties and drug release exploration. Chinese Pharmaceutical Journal, 24, 1394–1404.

  97. Ulusal, H., et al. (2022). Attachment of idarubicin to glutaraldehyde-coated magnetic nanoparticle and investigation of its effect in HL-60 cell line. International Journal of Chemistry and Technology, 6(2), 154–163.

    Article  Google Scholar 

  98. Eftekhari, R. B., et al. (2019). Co-delivery nanosystems for cancer treatment: A review. Pharmaceutical Nanotechnology, 7(2), 90–112.

    Article  MathSciNet  Google Scholar 

  99. Li, Y., Thambi, T., & Lee, D. S. (2018). Co-delivery of drugs and genes using polymeric nanoparticles for synergistic cancer therapeutic effects. Advanced Healthcare Materials, 7(1), 1700886.

    Article  Google Scholar 

  100. Aryal, S., Hu, C. M. J., & Zhang, L. (2010). Combinatorial drug conjugation enables nanoparticle dual-drug delivery. Small, 6(13), 1442–1448.

    Article  Google Scholar 

  101. Wang, D., et al. (2022). Idarubicin/mithramycin-acridine orange combination drugs co-loaded by DNA nanostructures: Different effects of intercalation and groove binding on drug release and cytotoxicity. Journal of Molecular Liquids, 355, 118947.

    Article  Google Scholar 

  102. Weng, S., et al. (2023). Idarubicin and IR780 co-loaded PEG-b-PTMC nanoparticle for non-Hodgkin’s lymphoma therapy by photothermal/photodynamic strategy. Materials & Design, 230, 112008.

    Article  Google Scholar 

  103. Nia, H. T., Munn, L. L., & Jain, R. K. (2020). Physical traits of cancer. Science, 370(6516), eaaz0868.

    Article  Google Scholar 

Download references

Funding

Abbas Rahdar thanks from University of Zabol for funding (UOZ-GR-8906). The authors (Sadanand Pandey) express profound gratitude to Shoolini University for their invaluable support, which played a pivotal role in facilitating the completion of work.

Author information

Authors and Affiliations

Authors

Contributions

F.S., Y. J, H. A., M.P.: investigation, data curation. P.Z., M. A.: writing, review, and editing. A. R., S. F-k., S. P: validation, writing, review, and editing. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Mehrab Pourmadadi, Abbas Rahdar, Sonia Fathi-karkan or Sadanand Pandey.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, F., Jalalian, Y., Abdouss, H. et al. Harnessing Nanotechnology for Idarubicin Delivery in Cancer Therapy: Current Approaches and Future Perspectives. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01376-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01376-2

Keywords

Navigation