Skip to main content

Advertisement

Log in

Biological Synthesis of Cerium Oxide Nanoparticles Using Funnel Extract: Characterization and Evaluation of Its Angiogenesis and Cytotoxicity Properties Against Breast Cancer Cells

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present study aims to characterize bio-synthesized cerium oxide nanoparticles (CNPs). Various analytical techniques, including Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential analysis, were used for the characterization of synthesized nanoparticles. The CNPs were synthesized using a bio-synthesis approach with funnel extract. Cell toxicity and angiogenesis activity of synthesized nanoparticles were performed by MTT test and chorioallantoic membrane (CAM) assay, respectively. The characterization results demonstrated the successful synthesis of the CNPs, which were relatively stable in aqueous solution. The morphological characteristics revealed that the particles exhibited a predominantly spherical and semi-spherical shape, forming porous agglomerates. In this study, the toxicity of CNPs was evaluated against breast cancer cell line MCF-7 in the concentration range of 15.62 to 500 µg/ml. The median concentration appeared to be about 250 μg/ml after 48 h of incubation. CNPs show less inhibitory effects against NIH-3T3 cells. Also, increasing the concentration of CNPs causes a reduction in the length and number of blood vessels. The results of this study provide valuable insights into the nanoparticles’ cytotoxicity and potential anticancer mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

Abbreviations

FTIR:

Fourier transform infrared spectroscopy

FESEM:

Field emission scanning electron microscopy

XRD:

X-ray diffraction

DLS:

Dynamic light scattering

CNPs:

Cerium oxide nanoparticles

MTT:

(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide

CAM:

Chorioallantoic membrane

MCF-7:

Breast cancer cell line

NIH-3T3:

Embryonic mouse fibroblast cell line

DMEM:

Dulbecco's modified Eagle medium

ICDD:

International Centre for Diffraction Data

PCS:

Photon correlation spectroscopy

References

  1. Hashemzadeh, A., Drummen, G. P., Avan, A., Darroudi, M., Khazaei, M., Khajavian, R., et al. (2021). When metal–organic framework mediated smart drug delivery meets gastrointestinal cancers. Journal of Materials Chemistry B, 9(19), 3967–3982.

    Article  PubMed  CAS  Google Scholar 

  2. Karimi-Shahri, M., Alalikhan, A., Hashemzadeh, A., & Javid, H. (2022). The applications of epigallocatechin gallate (EGCG)-nanogold conjugate in cancer therapy. Nanotechnology, 34, 212001.

    Article  ADS  Google Scholar 

  3. Mousavi-Kouhi, S. M., Beyk-Khormizi, A., Amiri, M. S., Mashreghi, M., Hashemzadeh, A., Mohammadzadeh, V., et al. (2023). Plant gel-mediated synthesis of gold-coated nanoceria using Ferula gummosa: Characterization and estimation of its cellular toxicity toward breast cancer cell lines. Journal of Functional Biomaterials, 14(7), 332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mohammadzadeh, V., Rahiman, N., Cabral, H., Quader, S., Zirak, M. R., Yazdi, M. E. T., et al. (2023). Poly-γ-glutamic acid nanoparticles as adjuvant and antigen carrier system for cancer vaccination. Journal of Controlled Release, 362, 278–296.

    Article  PubMed  CAS  Google Scholar 

  5. Farahi, S. M. M., Yazdi, M. E. T., Einafshar, E., Akhondi, M., Ebadi, M., Azimipour, S., ... & Iranbakhsh, A. (2023). The effects of titanium dioxide (TiO2) nanoparticles on physiological, biochemical, and antioxidant properties of Vitex plant (Vitex agnus-Castus L). Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e22144

  6. Rahimi, E., Asefi, F., Afzalinia, A., Khezri, S., Zare-Zardini, H., Ghorani-Azam, A., et al. (2023). Chitosan coated copper/silver oxide nanoparticles as carriers of breast anticancer drug: Cyclin D1/P53 expressions and cytotoxicity studies. Inorganic Chemistry Communications, 158, 111581.

    Article  CAS  Google Scholar 

  7. Ahmadi, R., Es-haghi, A., Zare-Zardini, H., & TaghavizadehYazdi, M. E. (2023). Nickel oxide nanoparticles synthesized by Rose hip extract exert cytotoxicity against the HT-29 colon cancer cell line through the caspase-3/caspase-9/Bax pathway. Emergent Materials, 6, 1–12.

    Article  Google Scholar 

  8. Bagherian, M. S., Zargham, P., Zarharan, H., Bakhtiari, M., MortezaeeGhariyeh Ali, N., Yousefi, E., et al. (2024). Antimicrobial and antibiofilm properties of selenium-chitosan-loaded salicylic acid nanoparticles for the removal of emerging contaminants from bacterial pathogens. World Journal of Microbiology and Biotechnology, 40(3), 86.

    Article  PubMed  CAS  Google Scholar 

  9. Eslamieh-Ei, F. M., Sharifimoghaddammood, N., Poustchi Tousi, S. A., Basharkhah, S., Mottaghipisheh, J., Es-Haghi, A., ... & Iriti, M. (2023). Synthesis and its characterisation of selenium/silver/chitosan and cellular toxicity against liver carcinoma cells studies. Natural Product Research, 1–9. https://doi.org/10.1080/14786419.2023.2256023

  10. Haddad-Mashadrizeh, A. M., Taghavizadehyazdi, M. E., Gholampour-Faroji, N., Bahrami, A. R., Zomorodipour, A., MoghaddamMatin, M., Qayoomian, M., & Saebnia, N. (2023). Introns and Their Therapeutic Applications in Biomedical Researches. Iranian Journal of Biotechnology, 21(4), 31–46.

    Google Scholar 

  11. Yazdi, M. E. T., Amiri, M. S., Akbari, S., Sharifalhoseini, M., Nourbakhsh, F., Mashreghi, M., et al. (2020). Green synthesis of silver nanoparticles using helichrysum graveolens for biomedical applications and wastewater treatment. BioNanoScience, 10(4), 1121–1127.

    Article  Google Scholar 

  12. Youssry, S. A., El-Sheredy, H. G., & Shalaby, T. I. (2022). In vitro evaluation of antitumor and immunomodulatory potential of curcumin nano-emulsion on breast cancer. BioNanoScience, 12(3), 841–850.

    Article  Google Scholar 

  13. Khalil Abad, M. H., Nadaf, M., & TaghavizadehYazdi, M. E. (2023). Biosynthesis of ZnO. Ag2O3 using aqueous extract of Haplophyllum obtusifolium: Characterization and cell toxicity activity against liver carcinoma cells. Micro & Nano Letters, 18(6), e12170.

    Article  CAS  Google Scholar 

  14. TaghavizadehYazdi, M. E., Qayoomian, M., Beigoli, S., & Boskabady, M. H. (2023). Recent advances in nanoparticles applications in respiratory disorders, a review. Frontiers in Pharmacology, 14, 1059343.

    Article  Google Scholar 

  15. NateqGolestan, M., Abbasi, M. R., Rakhshandeh, H., & TaghavizadehYazdi, M. E. (2023). Facile fabrication and characterization of silver nanoparticles by sunn pest (Eurygaster integriceps puton) damaged wheat and evaluation of its antibacterial and cellular toxicity toward liver cancer cell lines. Studies in Medical Sciences, 34(10), 586–597.

    Google Scholar 

  16. Al-Zoubi, M. S., & Al-Zoubi, R. M. (2022). Nanomedicine tactics in cancer treatment: Challenge and hope. Critical Reviews in Oncology/Hematology, 174, 103677.

    Article  PubMed  Google Scholar 

  17. Krasteva, N., & Georgieva, M. (2022). Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials. Pharmaceutics, 14(6), 1213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shakerimanesh, K., Bayat, F., Shahrokhi, A., Baradaran, A., Yousefi, E., Mashreghi, M., et al. (2022). Biomimetic synthesis and characterisation of homogenouse gold nanoparticles and estimation of its cytotoxity against breast cancer cell line. Materials Technology, 37, 2853.

    Article  ADS  CAS  Google Scholar 

  19. Adel, G., Javad, M., Amiri, M. S., Mohammad, M., Alireza, H., Aliakbar, H., et al. (2022). Resveratrol-mediated gold-nanoceria synthesis as green nanomedicine for phytotherapy of hepatocellular carcinoma. Frontiers in Bioscience, 27(8), 1–6.

    Google Scholar 

  20. Alabyadh, T., Albadri, R., Es-Haghi, A., Yazdi, M. E. T., Ajalli, N., Rahdar, A., et al. (2022). ZnO/CeO2 Nanocomposites: Metal-organic framework-mediated synthesis, characterization, and estimation of cellular toxicity toward liver cancer cells. Journal of Functional Biomaterials, 13(3), 139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fleming, C. L., Wong, J., Golzan, M., Gunawan, C., & McGrath, K. C. (2023). Insights from a bibliometrics-based analysis of publishing and research trends on cerium oxide from 1990 to 2020. International Journal of Molecular Sciences, 24(3), 2048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kim, Y. G., Lee, Y., Lee, N., Soh, M., Kim, D., & Hyeon, T. (2023). Ceria‐Based Therapeutic Antioxidants for Biomedical Applications. Advanced Materials, 2210819. https://doi.org/10.1002/adma.202210819

  23. Es-haghi, A., Javadi, F., Yazdi, M. E. T., & Amiri, M. S. (2019). The expression of antioxidant genes and cytotoxicity of biosynthesized cerium oxide nanoparticles against hepatic carcinoma cell line. Avicenna Journal of Medical Biochemistry, 7(1), 16–20.

    Article  Google Scholar 

  24. JavadFarhangi, M., Es-haghi, A., TaghavizadehYazdi, M. E., Rahdar, A., & Baino, F. (2021). MOF-Mediated synthesis of CuO/CeO2 composite nanoparticles: Characterization and estimation of the cellular toxicity against breast cancer cell line (MCF-7). Journal of Functional Biomaterials, 12(4), 53.

    Article  CAS  Google Scholar 

  25. Amaldoss, M. J. N., Mehmood, R., Yang, J. L., Koshy, P., Kumar, N., Unnikrishnan, A., et al. (2022). Anticancer therapeutic effect of cerium-based nanoparticles: Known and unknown molecular mechanisms. Biomaterials Science, 10(14), 3671–3694.

    Article  PubMed  CAS  Google Scholar 

  26. Naidi, S. N., Harunsani, M. H., Tan, A. L., & Khan, M. M. (2021). Green-synthesized CeO2nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. Journal of Materials Chemistry B, 9(28), 5599–5620.

    Article  PubMed  CAS  Google Scholar 

  27. Tang, J. L. Y., Moonshi, S. S., & Ta, H. T. (2023). Nanoceria: An innovative strategy for cancer treatment. Cellular and Molecular Life Sciences, 80(2), 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cao, Y., Cheng, K., Yang, M., Deng, Z., Ma, Y., Yan, X., et al. (2023). Orally administration of cerium oxide nanozyme for computed tomography imaging and anti-inflammatory/anti-fibrotic therapy of inflammatory bowel disease. Journal of Nanobiotechnology, 21(1), 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pi, F., Deng, X., Xue, Q., Zheng, L., Liu, H., Yang, F., et al. (2023). Alleviating the hypoxic tumor microenvironment with MnO2-coated CeO2 nanoplatform for magnetic resonance imaging guided radiotherapy. Journal of Nanobiotechnology, 21(1), 90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang, X., Liu, C., Lyu, Y., Xing, N., Li, J., Song, K., et al. (2023). NIR-propelled Janus nanomotors for active photoacoustic imaging and synergistic photothermal/chemodynamic therapy. Journal of Colloid and Interface Science, 648, 457–472.

    Article  ADS  PubMed  CAS  Google Scholar 

  31. Amiri, M. S., Yazdi, M. E. T., & Rahnama, M. (2021). Medicinal plants and phytotherapy in Iran: Glorious history, current status and future prospects. Plant Science Today, 8(1), 95–111.

    Article  Google Scholar 

  32. Ashna, M., Es-Haghi, A., KarimiNoghondar, M., Al Amara, D., & Yazdi, M. E. T. (2022). Greener synthesis of cerium oxide nanoemulsion using pollen grains of Brassica napus and evaluation of its antitumour and cytotoxicity properties. Materials Technology, 37(8), 525–532.

    Article  ADS  CAS  Google Scholar 

  33. Darroudi, M., Yazdi, M. E. T., & Amiri, M. S. (2020). Plant-mediated biosynthesis of nanoparticles. In 21st century nanoscience–A handbook (pp. 1-1). CRC Press.

  34. Mohebbati, R., Beheshti, F., Kakhki, S., & Yazdi, M. E. T. (2023). Investigating the analgesic effects of the Chenopodium Botrys L. hydroalcoholic extract using behavioral tests on mice. Iranian Journal of Pharmaceutical Sciences, 19(3), 208–16.

    Google Scholar 

  35. Yazdi, T., Ehsan, M., Housaindokht, M. R., Sadeghnia, H. R., EsmaeilzadehBahabadi, S., Amiri, M. S., et al. (2020). Assessment of phytochemical components and antioxidant activity of Rheum turkestanicum Janisch. Studies in Medical Sciences, 31(2), 75–81.

    Google Scholar 

  36. Qamar, S. U. R. (2021). Nanocomposites: Potential therapeutic agents for the diagnosis and treatment of infectious diseases and cancer. Colloid and Interface Science Communications, 43, 100463.

    Article  CAS  Google Scholar 

  37. Qamar, S. U. R., & Ahmad, J. N. (2021). Nanoparticles: Mechanism of biosynthesis using plant extracts, bacteria, fungi, and their applications. Journal of Molecular Liquids, 334, 116040.

    Article  CAS  Google Scholar 

  38. Bukhari, S. A. R., Shakir, H. A., Khan, M., Saeed, S., Ahmad, I., & Irfan, M. (2023). Biosynthesized cerium oxide nanoparticles CeO2NPs: Recent progress and medical applications. Current Pharmaceutical Biotechnology, 24(6), 766–779.

    Article  PubMed  Google Scholar 

  39. Samuel, M. S., Ravikumar, M., John, A., Selvarajan, E., Patel, H., Chander, P. S., et al. (2022). A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts, 12(5), 459.

    Article  CAS  Google Scholar 

  40. Saheb, M., Hosseini, H. A., Hashemzadeh, A., Elahi, B., Hasanzadeh, L., Oskuee, R. K., et al. (2019). Photocatalytic and biological attributes of green synthesized nickel oxide nanoparticles by Rheum turkestanicum (RT) root extract. ChemistrySelect, 4(8), 2416–2420.

    Article  CAS  Google Scholar 

  41. Mobaraki, F., Momeni, M., Jahromi, M., Kasmaie, F. M., Barghbani, M., Yazdi, M. E. T., et al. (2022). Apoptotic, antioxidant and cytotoxic properties of synthesized AgNPs using green tea against human testicular embryonic cancer stem cells. Process Biochemistry, 119, 118.

    Article  Google Scholar 

  42. Seyedi, Z., Amiri, M. S., Mohammadzadeh, V., Hashemzadeh, A., Haddad-Mashadrizeh, A., Mashreghi, M., et al. (2023). Icariin: A promising natural product in biomedicine and tissue engineering. Journal of Functional Biomaterials, 14(1), 44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yazdi, M. E., Amiri, M. S., & Darroudi, M. (2020). Biopolymers in the synthesis of different nanostructures 2020:29–43. https://doi.org/10.1016/B978-0-12-803581-8.10560-0

  44. El-Assri, E. M., Hajib, A., Choukri, H., Gharby, S., Lahkimi, A., Eloutassi, N., et al. (2023). Nutritional quality, lipid, and mineral profiling of seven Moroccan Apiaceae family seeds. South African Journal of Botany, 160, 23–35.

    Article  CAS  Google Scholar 

  45. Hassaïne, S., & Benmalek, S. (2023). Medicinal plants traditionally used in the Algerian Sahara: An ethnobotanical study. Vegetos, 36(2), 400–426.

    Article  Google Scholar 

  46. Noreen, S., Tufail, T., BadarUl Ain, H., & Awuchi, C. G. (2023). Pharmacological, nutraceutical, functional and therapeutic properties of fennel (foeniculum vulgare). International Journal of Food Properties, 26(1), 915–27.

    Article  CAS  Google Scholar 

  47. Govarthanan, M., Srinivasan, P., Selvankumar, T., Janaki, V., Al-Misned, F. A., El-Serehy, H. A., et al. (2020). Utilization of funnel-shaped ivory flowers of Candelabra cactus for zinc oxide nanoparticles synthesis and their in-vitro anti-cancer and antibacterial activity. Materials Letters, 273, 127951.

    Article  CAS  Google Scholar 

  48. Muthu, K., & Priya, S. (2017). Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 179, 66–72.

    Article  ADS  PubMed  CAS  Google Scholar 

  49. Muthu, K., Rini, S., Nagasundari, S. M., & Akilandaeaswari, B. (2021). Photocatalytic reduction and antioxidant potential of green synthesized silver nanoparticles from Catharanthus roseus flower extract. Inorganic and Nano-Metal Chemistry, 51(4), 579–589.

    Article  CAS  Google Scholar 

  50. Asgharzadeh, F., Hashemzadeh, A., Rahmani, F., Yaghoubi, A., Nazari, S. E., Avan, A., et al. (2021). Cerium oxide nanoparticles acts as a novel therapeutic agent for ulcerative colitis through anti-oxidative mechanism. Life Sciences, 278, 119500.

    Article  PubMed  CAS  Google Scholar 

  51. Khorrami, M. B. S. H., Pasdar, A., Ghayour-Mobarhan, M., Riahi-Zanjani, B., Hashemzadeh, A., Zareh, M., & Darroudi, M. (2019). Antioxidant and toxicity studies of biosynthesized cerium oxide nanoparticles in rats. International Journal of Nanomedicine, 14, 2915–2926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ashizawa, K. (2019). Nanosize particle analysis by dynamic light scattering (DLS). Yakugaku Zasshi, 139(2), 237–248.

    Article  PubMed  CAS  Google Scholar 

  53. Jia, Z., Li, J., Gao, L., Yang, D., & Kanaev, A. (2023). Dynamic light scattering: A powerful tool for in situ nanoparticle sizing. Colloids and Interfaces, 7(1), 15.

    Article  CAS  Google Scholar 

  54. Stetefeld, J., McKenna, S. A., & Patel, T. R. (2016). Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophysical Reviews, 8(4), 409–427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhou, W., Su, M., & Cai, X. (2017). Advances in nanoparticle sizing in suspensions: Dynamic light scattering and ultrasonic attenuation spectroscopy. KONA Powder and Particle Journal, 2017(34), 168–182.

    Article  Google Scholar 

  56. Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release, 235, 337–351.

    Article  PubMed  CAS  Google Scholar 

  57. Fuerstenau, D. W. (2005). Zeta potentials in the flotation of oxide and silicate minerals. Advances in Colloid and Interface Science, 114–115, 9–26.

    Article  PubMed  Google Scholar 

  58. Kamble, S., Agrawal, S., Cherumukkil, S., Sharma, V., Jasra, R. V., & Munshi, P. (2022). Revisiting zeta potential, the key feature of interfacial phenomena, with applications and recent advancements. ChemistrySelect, 7(1), e202103084.

    Article  CAS  Google Scholar 

  59. Lunardi, C. N., Gomes, A. J., Rocha, F. S., De Tommaso, J., & Patience, G. S. (2021). Experimental methods in chemical engineering: Zeta potential. Canadian Journal of Chemical Engineering, 99(3), 627–639.

    Article  CAS  Google Scholar 

  60. Mohammadi-Jam, S., Waters, K. E., & Greenwood, R. W. (2022). A review of zeta potential measurements using electroacoustics. Advances in Colloid and Interface Science, 309, 102778.

    Article  PubMed  CAS  Google Scholar 

  61. Ghasemi, M., Turnbull, T., Sebastian, S., & Kempson, I. (2021). The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences, 22(23), 12827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Liu, Q., Zhang, X., Xue, J., Chai, J., Qin, L., Guan, J., et al. (2022). Exploring the intrinsic micro−/nanoparticle size on their in vivo fate after lung delivery. Journal of Controlled Release, 347, 435–448.

    Article  PubMed  CAS  Google Scholar 

  63. Weng, J., Shao, Z., Chan, H. W., Li, S. P. Y., Lam, J. K. W., Tsang, C. K., et al. (2022). Mediating bio-fate of polymeric cholecalciferol nanoparticles through rational size control. Biomaterials Advances, 140, 213074.

    Article  PubMed  CAS  Google Scholar 

  64. Caputo, F., Clogston, J., Calzolai, L., Rösslein, M., & Prina-Mello, A. (2019). Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. Journal of Controlled Release, 299, 31–43.

    Article  PubMed  CAS  Google Scholar 

  65. Chan, H. W., Chow, S., Zhang, X., Kwok, P. C. L., & Chow, S. F. (2023). Role of particle size in translational research of nanomedicines for successful drug delivery: Discrepancies and inadequacies. Journal of Pharmaceutical Sciences, 112, 2371.

    Article  PubMed  CAS  Google Scholar 

  66. Zarharan, H., Bagherian, M., Rokhi, A. S., Bajgiran, R. R., Yousefi, E., Heravian, P., et al. (2023). The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. Arabian Journal of Chemistry, 16(7), 104806.

    Article  CAS  Google Scholar 

  67. Kieran, M. W., Kalluri, R., & Cho, Y.-J. (2012). The VEGF pathway in cancer and disease: Responses, resistance, and the path forward. Cold Spring Harbor Perspectives in Medicine, 2(12), a006593.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Saeed, B. A., Lim, V., Yusof, N. A., Khor, K. Z., Rahman, H. S. &  Samad, N. A. (2019). Antiangiogenic Properties of Nanoparticles: A systematic review. International Journal of Nanomedicine, 5135–46. 

  69. Jo, D. H., Kim, J. H., Son, J. G., Song, N. W., Kim, Y.-I., Yu, Y. S., et al. (2014). Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomedicine: Nanotechnology, Biology and Medicine, 10(5), e1109–e17.

    Article  Google Scholar 

  70. Guarnieri, D., Malvindi, M. A., Belli, V., Pompa, P. P., & Netti, P. (2014). Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. Journal of Nanoparticle Research, 16(2), 2229.

    Article  ADS  Google Scholar 

  71. Augustine, R., Mathew, A. P., & Sosnik, A. (2017). Metal oxide nanoparticles as versatile therapeutic agents modulating cell signaling pathways: Linking nanotechnology with molecular medicine. Applied Materials Today, 7, 91–103.

    Article  Google Scholar 

  72. Nethi, S. K., Barui, A. K., Mukherjee, S., & Patra, C. R. (2019). Engineered nanoparticles for effective redox signaling during angiogenic and antiangiogenic therapy. Antioxidants & Redox Signaling, 30(5), 786–809.

    Article  CAS  Google Scholar 

  73. Barui, A. K., Nethi, S. K., Haque, S., Basuthakur, P., & Patra, C. R. (2019). Recent development of metal nanoparticles for angiogenesis study and their therapeutic applications. ACS Applied Bio Materials, 2(12), 5492–5511.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Islamic Azad University for providing equipment and facilities.

Author information

Authors and Affiliations

Authors

Contributions

SJSA, MG, MM, and AE developed the theoretical formalism, performed the analytic calculations and performed the numerical simulations. All of the authors contributed to the final version of the manuscript. AE supervised the project.

Corresponding author

Correspondence to Ali Es-haghi.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Khafaji, S., Ghobeh, M., Mashergi, M. et al. Biological Synthesis of Cerium Oxide Nanoparticles Using Funnel Extract: Characterization and Evaluation of Its Angiogenesis and Cytotoxicity Properties Against Breast Cancer Cells. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01355-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01355-7

Keywords

Navigation