Skip to main content
Log in

Silicon Nanoparticle Application on Thymus serpyllum Under Drought and Salinity Stress in Vitro

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The primary objective of this work was to ascertain whether silicon oxide nanoparticles (SiO2-NPs) could improve the growth and volatile oil productivity under abiotic stress. The Thymus serpyllum shoots obtained in vitro were cultivated on Murashige and Skoog (MS) medium that had been strengthened with various NaCl at 0.0, 25, 50, and 100 mM. SiO2-NPs at a level of 100 mg/L were combined with sorbitol at 0.0, 15, 30, and 45 g/L or polyethylene glycol (PEG) at 0.0, 1, 2, and 4% as drought stress agents. The vegetative growth, root development, proline content, and volatile oil were measured. The maximum values of shoot number, root number, and root percentage in terms of salinity were found in the MS medium with 100 mg/L SiO2-NPs + 25 mM NaCl. The combination of 100 mg/L SiO2-NPs plus 15 g/L sorbitol produced the highest value of parameters, with the exception of shoot and root length. At 100 mM NaCl, salinity led to the greatest concentration of proline. When SiO2-NPs with PEG were applied, the shoots survived, and there was a considerable proline deposit at 100 mg/L SiO2-NPs + 2% PEG. At 100 mg/L SiO2-NPs + 30 g/L sorbitol, the largest percentage of volatile oil was found to exist, with thymol as its main constituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ANOVA:

Analysis of variance

BA:

6-Benzyl adenine

PGE:

Polyethelengylicol

IBA:

Iindole-3-butyric acid

2iP:

N6-(2-isopentenyl) adenine

Kin:

Kinetin

MS:

Murashige and Skoog

NAA:

α-Naphthalene acetic acid

PGRs:

Plant growth regulators

SiO2-NPs:

Silicon oxide nanoparticles

Si:

Silicon

EDX:

Energy-dispersive X-ray

NaCl:

Sodium chloride

SEM:

Scanning electron microscopy

Conc.:

Concentration

FW:

Fresh weight

References

  1. Jarić, S., Mitrović, M. & Pavlović, P. (2015) Review of ethnobotanical, phytochemical and pharmacological study of Thymus serpyllum L. Hindawi Publishing Corporation, Evi-dence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2015/101978

  2. Salehi, B., Abu-Darwish, M. S., Taraweneh, A. H., Carbal, C., Gasetskaya, A. V., Salgueiro, L., Hosseinabadi, T., Rabaji, S., Chanda, W., Sharifi-Rad, M., et al. (2019). Thymus spp. plants—Food applications and phytopharmacy properties. Trends in Food Science & Technology, 85, 287–306.

    Article  Google Scholar 

  3. Pandey, A. K., Chávez-González, M. L., Silva, A. S., & Singh, P. (2021). Essential oils from the genus Thymus as antimicrobial food preservatives: Progress in their use as nanoemulsions—A new paradigm. Trends in Food Science & Technology, 111, 426–441.

    Article  Google Scholar 

  4. Valerio, F., Mezzapesa, G. N., Ghannouchi, A., Mondelli, D., Logrieco, A. F., & Perrino, E. V. (2021). Characterization and antimicrobial properties of essential oils from four wild taxa of Lamiaceae family growing in Apulia. Agronomy, 11, 1431.

    Article  Google Scholar 

  5. Tohidi, B., Rahimmalek, M., & Trindade, H. (2019). Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Industrial Crops and Products, 134, 89–99.

    Article  Google Scholar 

  6. Moradi, P., Ford-Lloyd, B., & Pritchard, J. (2014). Plant-water responses of different medicinal plant thyme (Thymus spp.) species to drought stress condition. Australian Journal of Crop Science, 8, 666–673.

    Google Scholar 

  7. Moradi, P., Mahdavi, A., Khoshkam, M., & Lipidomics, I. M. (2017). Unravels the role of leaf lipids in thyme plant response to drought stress. International Journal of Molecular Sciences, 18, 2067.

    Article  Google Scholar 

  8. Ashrafi, M., Azimi-Moqadam, M. R., Moradi, P., Mohseni Fard, E., Shekari, F., & Kompany-Zareh, M. (2018). Effect of drought stress on metabolite adjustments in drought tolerant and sensitive thyme. Plant Physiology and Biochemistry, 132, 391–399.

    Article  Google Scholar 

  9. Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., & Chen, S. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7, 132.

    Article  Google Scholar 

  10. Hernandez, J. A., Ferrer, M. A., Jimenez, A., Barcelo, A. R., & Sevilla, F. (2001). Antioxidant systems and O2. H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiology, 127, 817–831.

    Article  Google Scholar 

  11. Barba-Espín, G., Clemente-Moreno, M. J., Álvarez, S., García-Legaz, M. F., Hernandez, J. A., & Diaz-Vivancos, P. (2011). Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biology, 13, 909–917.

    Article  Google Scholar 

  12. Ashrafi, M., Azimi-Moqadam, M. R., MohseniFard, E., Shekari, F., Jafary, H., Moradi, P., Pucci, M., Abate, G., & Mastinu, A. (2022). Physiological and molecular aspects of two Thymus species differently sensitive to drought stress. Biotech, 11, 8. https://doi.org/10.3390/biotech110200081

    Article  Google Scholar 

  13. Wijewardene, I., Mishra, N., Sun, L., Smit, J., Zhu, X. L., Payton, P., Shen, G. X., & Zhang, H. (2020). Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco activase gene RCA. Plant Science, 296, 110499.

    Article  Google Scholar 

  14. Dubey, A., Kumar, A., Malla, M. A., Chowdhary, K., Singh, G., Ravikanth, G., Harish Sharma, S., Saati-Santamaria, Z., Menendez, E., et al. (2021). Approaches for the amelioration of adverse effects of drought stress on crop plants. Frontiers in Bioscience, 26, 928–947.

    Article  Google Scholar 

  15. Ahmad, M. S. A., Javed, F., & Ashraf, M. (2007) Iso-Osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. Plant Growth Regulation, 53, 53–63. https://doi.org/10.1007/s10725-007-9204-0

  16. Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65, 3049–3057.

    Article  Google Scholar 

  17. Zhu, Y., & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(455–472), 16.

    Google Scholar 

  18. Debona, D., Rodrigues, F. A., & Datnoff, L. E. (2017). Silicon’s role in abiotic and biotic plant stresses. Annual review of Phytopathology, 55, 85–107.

    Article  Google Scholar 

  19. Sousa, A., Saleh, A. M., HabeebTH, HassanYM., Zrieq, R., Wadaan, M. A. M., HozzeinWN, S. S., Matos, M., & AbdElgawad, H. (2019). Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Science of the Total Environment, 693, 133636.

    Article  Google Scholar 

  20. El-Shetehy, M., Moradi, A., Maceroni, M., Maceroni, M., Reinhardt, D., Petri-Fink, A., Rothen-Rutishauser, B., Mauch, F., & Schwab, F. (2020). Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology, 16, 344–353.

    Article  Google Scholar 

  21. Hussain, H. I., Yi, Z., Rookes, J. E., Kong, L. X., & Cahill, D. M. (2013). Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. Journal of Nanoparticle Research, 15, 1676.

    Article  Google Scholar 

  22. Dubchak, S., Ogar, A., Mietelski, J. W., & Turnau, K. (2010). Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Spanish Journal of Agricultural Research, 1, 103–108.

    Article  Google Scholar 

  23. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V., & Kannan, N. (2012). Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticle Research, 14, 1–14.

  24. Suriyaprabha, R., Karunakaran, G., Kavitha, K., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2014). Application of silica nanoparticle in maize to enhance fungal resistance. IET Nanobiotechnol., 8, 133–137. 26. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dube NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology and Biochemistry, 96, 189–198.

    Google Scholar 

  25. Cui, J., Liu, T., Li, F., Yi, J., Liu, C., & Yu, H. (2017). Silica nanoparticles alleviate cadmium toxicity in rice cells: Mechanisms and size effects. Environmental Pollution, 228, 363–369.

    Article  Google Scholar 

  26. Abdel-Haliem, M. E. F., Hegazy, H. S., Hassan, N. S., & Naguib, D. M. (2017). Effect of silica ions and nano silica on rice plants under salinity stress. Ecological Engineering, 99, 282–289.

    Article  Google Scholar 

  27. Moradi, P., Ford-lloyd, B., & Pritchard, J. (2017). Comprehensive list of metabolites measured by DI-FTICR mass spectrometry in thyme plants with contrasting tolerance to drought. Data Br, 12, 438–441. https://doi.org/10.1016/j.dib.2017.04.039

    Article  Google Scholar 

  28. Sakhanokho, H. F., & Kelley, R. Y. (2009). Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos (cv ‘Luna Red’). African Journal of Biotechnology, 8, 14–74.

    Google Scholar 

  29. McNeil, S. E. ( 2011).  Characterization of nanoparticles intended for drug delivery. Scientia Pharmaceutica, 79(3), 701–702. https://doi.org/10.3797/scipharm.br-11-01

  30. Mustafa, S. S. S., & Toaiema, W. E. (2022). In vitro propagation and influence of silicon nanoparticles on growth of Thymus serpyllum. Eastern Journal of Agricultural and Biological Sciences (EJABS), 2(4), 18–24.

    Google Scholar 

  31. Bates, L. S., Waldren, R. P., & Teare, I. (1973). Plant and Soil, 39, 205–207.

    Article  Google Scholar 

  32. Pharmacopoeia, B. (1963). Determination of volatile oil in drugs. The Pharmaceutical Press.

    Google Scholar 

  33. Adams, R. P. (2007). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy (4th ed.). Allured Publishing Corporation.

    Google Scholar 

  34. Babushok, V. I., Linstrom, P. J., & Zenkevich, I. G. (2011). Retention indices for frequently reported compounds of plant essential oils. Journal of Physical and Chemical Reference Data, 40, 043101–47.

    Article  Google Scholar 

  35. Duncan, D. B. (1955). Multiple range and multiple “F” test. Biometrics, 11, 1–42. https://doi.org/10.2307/3001478

    Article  MathSciNet  Google Scholar 

  36. Snedecor, G. W., & Cochran, W. G. (1990). Statistical methods. 8 the dn. Iowa State University Press Ames Iowa USA.

  37. Xie, Y., Li, B., Zhang, Q., Zhang, C., Lu, K., Tao, G., et al. (2011). Effects of nano-SiO2 on photosynthetic characteristics of Indocalamus barbatus. Journal of Northeastern Forestry University., 39, 22–25.

    Google Scholar 

  38. Gopal, J., & Iwama, K. (2007). In vitro screening of potato against water-stress mediated through sorbitol and polyethylene glycol. Plant Cell Reports, 26, 693–700.

    Article  Google Scholar 

  39. Razavizadeh, R., Farahzadianpoor, F., Adabavazeh, F., & Komatsu, S. (2019). Physiological and morphological analyses of Thymus vulgaris L. in vitro cultures under polyethylene glycol (PEG)-induced osmotic stress. In Vitro Cellular & Developmental Biology-Plant, 55, 342–357.

    Article  Google Scholar 

  40. Al-Mayahi, A. M. W. (2016). Effect of Silicon (Si) application on Phoenix dactylifera L. growth under drought stress induced by polyethylene glycol (PEG) in vitro. American Journal of Plant Sciences, 7, 1711–1728.

  41. Shen, J., Xing, T., Yuan, H., Liu, Z., Jin, Z., Zhang, L., & Pei, Y. (2013). Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions. PLoS ONE 8.

  42. Muscolo, A., Sidari, M., Anastasi, U., Santonoceto, C., & Maggio, A. (2014). Effect of PEG induced drought stress on seed germination of four lentil genotypes. Journal of Plant Interactions, 9, 354–363.

    Article  Google Scholar 

  43. Poborilova, Z., Opatrilova, R., & Babula, P. (2013). Environmental and Experimental Botany, 91, 1–11.

    Article  Google Scholar 

  44. Li, B., Tao, G., Xie, Y., & Cai, X. (2012). Physiological effects under the condition of spraying nano-SiO2 onto the Indocalamus barbatus McClure leaves. Journal of Nanjing Forestry University, 4, 161–164.

    Google Scholar 

  45. Mahmoud, L. M., Duttb, M., Shalana, A. M., El-Kadya, M. E., El-Boraya, M. S., Shabanac, Y. M., & Grosser, J. W. (2020). Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. South African Journal of Botany, 132, 155–163.

    Article  Google Scholar 

  46. Nourozi, E., Hosseini, B., Maleki, R., & Mandoulakani, B. A. (2019). Pharmaceutical important phenolic compounds overproduction and gene expression analysis in Dracocephalum kotschyi hairy roots elicited by SiO2 nanoparticles. Industrial Crops and Products, 133, 435–446.

    Article  Google Scholar 

  47. Tátrai, Z. A., Sanoubar, R., Pluhár, Z., Mancarella, S., Orsini, F., & Gianquinto, G. (2016). Morphological and physiological plant responses to drought stress in Thymus citriodorus. International Journal of Agronomy, e4165750.

  48. Hosseini, N., Hagh, Z. G., & Khoshghalb, H. (2019). Morphological, antioxidant enzyme activity and secondary metabolites accumulation in response of polyethylene glycol-induced osmotic stress in embryo-derived plantlets and callus cultures of Salvia leriifolia. Plant Cell, Tissue and Organ Culture, 140, 143–155.

    Article  Google Scholar 

  49. Pradhan, N., Singh, P., Dwivedi, P., & Pandey, D. K. (2020). Evaluation of sodium nitroprusside and putrescine on polyethylene glycol induced drought stress in Stevia rebaudiana Bertoni under in vitro condition. Industrial Crops and Products, 154, 112754.

    Article  Google Scholar 

  50. Acemi, A., Duman, Y. A., Karakus, Y. Y., & Özen, F. (2018). Developmental and biochemical analyses of in vitro drought stress response in ornamental European Bluestar (Amsonia orientalis Decne.). Folia Hortic., 3, 357–366.

    Article  Google Scholar 

  51. Zhang, C., Moutinho-Pereira, J. M., Correia, C., Coutinho, J., GonçalvesGuedes, A. A., & Gomes-Laranjo, J. (2013). Foliar application of Sili-KⓇ increases chestnut (Castanea spp.) growth and photosynthesis, simultaneously increasing susceptibility to water deficit. Plant and Soil, 365, 211–225.

    Article  Google Scholar 

  52. Jaarsma, R., de Vries, R. S., & de Boer, A. H. E. (2013). Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS ONE, 8, e60183.

    Article  Google Scholar 

  53. Zhang, L., & Becker, D. F. (2015). Connecting proline metabolism and signaling pathways in plant senescence. Frontiers in Plant Science, 6, 552. https://doi.org/10.3389/fpls.2015.00552

  54. Joseph, E. A., Radhakrishnan, V. V., & Mohanan, K. V. (2015). A study on the accumulation of proline—An osmoprotectant amino acid under salt stress in some native rice cultivars of North Kerala. India. Universal Journal of Agricultural Research, 3, 15–22.

    Article  Google Scholar 

  55. Kumar, S. P., & Kumari, B. R. (2021). Impact of ethyl methane sulphonate mutagenesis in Artemisia vulgaris L. under NaCl stress. BioTech, 10, 18. https://doi.org/10.3390/biotech10030018

    Article  Google Scholar 

  56. Kumar, R., Khurana, A., & Sharma, A. K. (2013). Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 65, 4561–4575.

    Article  Google Scholar 

  57. Yinfeng, X., Bo, L., Qianqian, Z., Chunxia, Z., Kouping, L., & Gongsheng, T. (2011). Effects of nano-TiO2 on photosynthetic characteristics of Indocalamus barbatus. Journal of Northeast Forestry University, 39, 22–25.

  58. Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19, 998–1011.

    Article  Google Scholar 

  59. Per, T. S., Khan, N. A., ReddyPS, M. A., Hasanuzzaman, M., Khan, M. I. R., & Anjum, N. A. (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 115, 126–140.

    Article  Google Scholar 

  60. Oliveira, L. A. R., Cardoso, M. N., Oliveira, A. C. A., Machado, C. A., CardosoB, T., Silva, A. V. C., & Ledo, A. S. (2018). Effects of in vitro drought stress on growth, proline accumulation and antioxidant defense in sugarcane. Journal of Agricultural Science., 10, 5.

    Article  Google Scholar 

  61. Yang, F., Liu, C., Gao, F., Xu, M., Wu, X., Zheng, L., et al. (2007). Biological trace element Research., 119, 77–88.

    Article  Google Scholar 

  62. Sefidkon, F., Dabiri, M., & Mirmostafa, S. A. (2004). The composition of Thymus serpyllum L. oil. Journal of Essential Oil Research, 16, 184–185.

    Article  Google Scholar 

  63. Ahmad, A. M., Khokhar, I., Ahmad, I., Kashmiri, M. A., Adnan, A., & Ahmad, M. (2006). Study of antimicrobial activity and composition by GC/MS spectroscopic analysis of the essential oil of Thymus serphyllum. Internet Journal of Food Safety, 5, 56–60.

    Google Scholar 

  64. Aziz, S., Rehman, H., Irshad, M., Asghar, S. F., Hussain, H., & Ahmed, I. (2010). Phytotoxic and antifungal activities of essential oils of Thymus serpyllum grown in the State of Jammu and Kashmir. Journal of Essential Oil Bearing Plants, 13(2), 224–229.

    Article  Google Scholar 

  65. Kirillov, V., Stikhareva, T., Mukanov, B., Chebotko, N., Ryazantsev, O., Atazhanova, G., & Adekenov, S. (2016). Composition of the essential oil of Thymus serpyllum L. from Northern Kazakhstan. TEOP, 19(1), 212–222.

    Google Scholar 

  66. Goyal, S., Pathak, R., Pandey, H. K., Kumari, A., Tewari, G., Bhandari, N. S., Bala, M., Bhandari, N. S., & Bala, M. (2020). Comparative study of the volatile constituents of Thymus serpyllum L. grown at different altitudes of Western Himalayas. SN Applied Sciences, 2, 1208. https://doi.org/10.1007/s42452-020-2938-2

    Article  Google Scholar 

  67. Nikolić, B., Matović, M., Mladenović, K., Todosijević, M., Stanković, J., Đorđević, I., Marin, P. D., & Tešević, V. (2019). Volatiles of Thymus serpyllum obtained by three different methods. Natural Product Communications. https://doi.org/10.1177/1934578X19856254

    Article  Google Scholar 

  68. Raal, A., Paaver, U., Arak, E., & Orav,  A. (2004). Content and composition of the essential oil of Thymus serpyllum L. growing wild in Estonia. Medicina (Kaunas), 40(8), 795–800.

Download references

Author information

Authors and Affiliations

Authors

Contributions

S M put the plan of the in vitro propagation section, did the in vitro propagation of the plant and did the analysis of data, written the manuscript and revised it, and corresponding the publication. W T did the extraction of proline , essential oil and analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sabha S. S. Mustafa.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key message

Silicon nanoparticles were applied to improve the growth and accumulation of volatile oil under salinity and drought stresses in Thymus serpyllum in vitro.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toaiema, W.I.M., Mustafa, S.S.S. Silicon Nanoparticle Application on Thymus serpyllum Under Drought and Salinity Stress in Vitro. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01332-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01332-0

Keywords

Navigation