Skip to main content

Advertisement

Log in

In silico Approach to Unveil Robust Anti-Vibrio parahaemolyticus Activity of Nano Complex

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In shrimp aquaculture, a major economic loss due to the bacterial disease called acute hepatopancreatic necrosis disease (AHPND) infected by Vibrio parahaemolyticus and caused the highest mortality (100%). Many approaches have been addressed to control vibriosis diseases in the shrimp industry, such as water monitoring and replacements, management practices and use of antibiotics but not fully controlled. V. parahaemolyticus has important virulence factors such as thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), both are strongly directly associated with pathogenicity. Materials can be designed to specifically target PirA, PirB, TDH, and TRH, offering a targeted and effective approach to prevent infections in aquaculture. In the present study, in silico approach to unveil the potential of nanomaterials (ZnO, CuO, Se, and Fe2O3) as inhibitors against the toxins and thermostable proteins of V. parahaemolyticus has been studied via molecular docking analysis, AutoDock paired an empirical free energy force field with a Lamarckian Genetic Algorithm was used. The interaction results were visualized using molecular graphics tool Chimera. The current work is focused on predicting the ligands (ZnO, CuO, Se, and Fe2O3 nanoparticles) interact with the toxin and thermostable proteins of V. parahaemolyticus. The conformations of ligands bonded to macromolecular proteins can be assessed with the use of computational docking. These findings may be used to develop novel strategies for halting as well as controlling V. parahaemolyticus infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmed, J., Khan, M. H., Unnikrishnan, S., & Ramalingam, K. (2022). Acute hepatopancreases necrosis diseases (AHPND) as challenging threat in shrimp. Biointerf Res Appl Chem., 12(1), 978–991.

    CAS  Google Scholar 

  2. Nations, F. A. A. O. O. T. U. (2018). FAO yearbook – Fishery and aquaculture statistics 2016. Food & Agriculture Org. http://books.google.ie/books?id=zNZmDwAAQBAJ&printsec=frontcover&dq=FAO+yearbook+(2017)+Fishery+and+aquaculture+statistics&hl=&cd=2&source=gbs_api

  3. Zheng, Z., Li, R., Aweya, J. J., Yao, D., Wang, F., Li, S., Tuan, T. N., & Zhang, Y. (2021). The PirB toxin protein from Vibrio parahaemolyticus induces apoptosis in hemocytes of Penaeus vannamei. Virulence, 12(1), 481–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shinn, A. P., Pratoomyot, J., Griffiths, D., Trong, T. Q., Vu, N. T., & Jiravanichpaisal, P. (2018). Briggs M (2018) Asian shrimp production and economic costs of disease. Asian Fisheries Science, 31S, 29–58.

    Article  Google Scholar 

  5. Tran, L., Nunan, L., Redman, R. M., Mohney, L. L., Pantoja, C. R., Fitzsimmons, K., & Lightner, D. V. (2013). Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ., 105(1), 45–55.

    Article  PubMed  Google Scholar 

  6. Han, J. E., Mohney, L. L., Tang, K. F. J., Pantoja, C. R., & Lightner, D. V. (2015). Plasmid mediated tetracycline resistance of Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND) in shrimps. Aquacult Rep, 2, 17–21.

    Google Scholar 

  7. Gu, X., Liu, M., Wang, B., Jiang, K., & Wang, L. (2022). Identification and expression analysis of an interacting protein (LvFABP) that mediates Vibrio parahaemolyticus AHPND toxin action. Frontiers in Immunology, 13, 940405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar, V., Bels, L. D., Couck, L., Baruah, K., Bossier, P., & Broeck, W. V. D. (2019). PirABVP toxin binds to epithelial cells of the digestive tract and produce pathognomonic AHPND lesions in germ-free brine shrimp. Toxins, 11(12), 717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, C. T., Chen, I. T., Yang, Y. T., Ko, T. P., Huang, Y. T., Huang, J. Y., Huang, M. F., Lin, S. J., Chen, C. Y., Lin, S. S., Lightner, D. V., Wang, H. C., Wang, A. H. J., Wang, H. C., Hor, L. I., & Lo, C. F. (2015). The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proceedings National Academy Sci United States Am, 112, 10798–10803.

    Article  CAS  Google Scholar 

  10. Wang, H., Wang, C., Tang, Y., Sun, B., Huang, J., & Song, X. (2018). Pseudoalteromonas probiotics as potential biocontrol agents improve the survival of Penaeus vannamei challenged with acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus. Aquaculture, 494, 30–36.

    Article  Google Scholar 

  11. Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., & Bostick, K. (2010). Chemical use in Salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture, 306(1–4), 7–23.

    Article  CAS  Google Scholar 

  12. Zhai, Q. Q., & Li, J. (2019). Effectiveness of traditional Chinese herbal medicine, San-Huang-San, in combination with enrofloxacin to treat AHPND-causing strain of Vibrio parahaemolyticus infection in Litopenaeus vannamei. Fish & Shellfish Immunology, 87, 360–370.

    Article  CAS  Google Scholar 

  13. Chang, Y. H., Kuo, W. C., Wang, H. C., & Chen, Y. M. (2020). Biocontrol of acute hepatopancreatic necrosis disease (AHPND) in shrimp using a microalgal-bacterial consortium. Aquaculture, 512, 734990.

    Article  Google Scholar 

  14. Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356, 351–356.

    Article  Google Scholar 

  15. Vaughan, E. E., de Vries, M., Zoetendal, E. G., Ben-Amor, K., Akkermans, A. D., & Vos, W. D. (2002). The intestinal labs. Antonie van Leeuwenhoek, 82(1–4), 341.

    Article  CAS  PubMed  Google Scholar 

  16. Ding, X., Li, Z. J., Chen, Y. Q., Lin, H. Z., & Yang, K. (2004). Effects of probiotics on growth and activities of digestive enzymes of Pennaus vannamei. J Fishery Sci China, 11, 580–584.

    CAS  Google Scholar 

  17. Shan, H., & Obbard, J. (2001). Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria. Applied Microbiology and Biotechnology, 57(5–6), 791–798.

    CAS  PubMed  Google Scholar 

  18. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Computational Chem., 16, 2785–2791.

    Article  Google Scholar 

  19. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. J Cheminformatics, 3(1), 33.

    Article  Google Scholar 

  20. Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473

  21. Rahman, A., Ali, M. T., Shawan, M. M. A. K., Sarwar, M. G., Khan, M. A. K., & Halim, M. A. (2016). Halogen-directed drug design for Alzheimer’s disease: A combined density functional and molecular docking study. Springerplus, 5, 1346.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. J Computational Chem., 25(13), 1605–1612.

    Article  CAS  Google Scholar 

  23. Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.

    Article  CAS  PubMed  Google Scholar 

  24. Shawan, M. M. A. K., Sharma, A. R., Bhattacharya, M., Mallik, B., Akhter, F., Shakil, Md. S., Hossain, Md. M., Banik, S., Lee, S. S., Hasan, Md. A., & Chakraborty, C. (2021). Designing an effective therapeutic siRNA to silence RdRp gene of SARS-CoV-2. Infection, Genet Evol, 93, 104951.

    Article  CAS  Google Scholar 

  25. Shawan, M. M. A. K., Halder, S. K., & Hasan, M. A. (2021). Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: An in silico molecular modeling approach in battling the COVID-19 outbreak. Bull Natl Res Cent, 45, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Halder, S. K., Sultana, I., Shuvo, M. N., Shil, A., Himel, M. K., Hasan, M. A., & Shawan, M. M. A. K. (2023). In silico identification and analysis of potentially bioactive antiviral phytochemicals against SARS-CoV-2: A molecular docking and dynamics simulation approach. BioMed Research International, 2023, 1–32. https://doi.org/10.1155/2023/5469258

  27. Shawan, M. M. A. K., Sharma, A. R., Halder, S. K., Arian, T. A., Shuvo, Md. N., Sarker, S. R., & Hasan, Md. A. (2023). Advances in computational and bioinformatics tools and databases for designing and developing a multi-epitope-based peptide vaccine. Int J Peptide Res Therapeutics, 29, 60.

    Article  CAS  Google Scholar 

  28. Mahalakshmi, N., & Rajavel, R. (2014). Synthesis, spectroscopic, DNA cleavage and antibacterial activity of binuclear Schiff base complexes. Arabian J Chem, 7, 509–517.

    Article  CAS  Google Scholar 

  29. Zheng, K., Yan, M. X., Li, Y. T., Wu, Z. Y., & Yan, C. W. (2016). Synthesis and structure of new dicopper(II) complexes bridged by N-(2-hydroxy-5-methylphenyl)-N′-[3-(dimethylamino)propyl] oxamide with in vitro anticancer activity: A comparative study of reactivities towards DNA/protein by molecular docking and experimental assays. European J Med Chem., 109, 47–58.

    Article  CAS  Google Scholar 

  30. Vinu, D., Govindaraju, K., Vasantharaja, R., Amreen Nisa, S., Kannan, M., & Vijai Anand, K. (2021). Biogenic zinc oxide, copper oxide and selenium nanoparticles: Preparation, characterization and their anti-bacterial activity against Vibrio parahaemolyticus. J Nanostruct Chem, 11, 271–286.

    Article  CAS  Google Scholar 

  31. Hamdi, M., Abdel-Bar, H. M., Elmowafy, E., El-khouly, A., Mansour, M., & Awad, G. A. (2021). Investigating the internalization and COVID-19 antiviral computational analysis of optimized nanoscale zinc oxide. ACS Omega, 6(10), 6848–6860. https://doi.org/10.1021/acsomega.0c06046

  32. Pandey, M., Singh, M., Wasnik, K., Gupta, S., Patra, S., Gupta, P. S., Pareek, D., Chaitanya, N. S. N., Maity, S., Reddy, A. B. M., Tilak, R., & Paik, P. (2021). Targeted and enhanced antimicrobial inhibition of mesoporous ZnO–Ag2O/Ag, ZnO–CuO, and ZnO–SnO2 composite nanoparticles. ACS Omega, 6(47), 31615–31631. https://doi.org/10.1021/acsomega.1c04139

  33. Ikram, M., Shahzadi, A., Haider, A., Imran, M., Hayat, S., Haider, J., Ul-Hamid, A., Rasool, F., Nabgan, W., Mustajab, M., Ali, S., & Al-Shanini, A. (2023). Toward efficient bactericidal and dye degradation performance of strontium and starch-doped Fe2O3 nanostructures: In silico molecular docking studies. ACS Omega, 8(8), 8066–8077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoon, J., Bae, Y., & Lee, S. (2017). Effects of varying concentrations of sodium chloride and acidic conditions on the behavior of Vibrio parahaemolyticus and Vibrio vulnificus cold-starved in artificial sea water microcosms. Food Sci Biotechnol, 26(3), 829–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Ministry of Earth Sciences, Earth Science and Technology Cell (MoES/11-MRDFIESTC-MEB (SU)/2/2014 PCIII) & National Innovations on Climate Resilient Agriculture (NICRA), Indian Council of Agricultural Research (ICAR-F.No.2–13(8)/19–20 NICRA), Government of India for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

Vinu D conceived, performed the experiments. Santhiya P performed the experiments, coordinated the study, and drafted the manuscript. Govindaraju K edited the manuscript and supervision.

Corresponding author

Correspondence to Govindaraju Kasivelu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Informed Consent

None

Research Involving Humans and Animals Statement

None

Conflict of Interest

All authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayalan, V., Panchalingam, S. & Kasivelu, G. In silico Approach to Unveil Robust Anti-Vibrio parahaemolyticus Activity of Nano Complex. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01325-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01325-z

Keywords

Navigation