Skip to main content
Log in

Biological Potential of Silver Nanoparticles Synthesized by an Endophytic Fungus Metapochonia suchlasporia-KUMBMDBT-23

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The field of fungal nanotechnology has emerged as a novel area of research, leading to significant advancements in the production of nanoparticles with diverse applications for human benefit. This study exploits the endophytic fungus Metapochonia suchlasporia from the medicinal plant Argemone mexicana to biosynthesize Met-AgNPs. M. suchlasporia–submerged fermentation-derived ethyl acetate extract secondary metabolites are also examined. Bio-analytical methods characterized Met-AgNPs. A peak at 417 nm in the UV-visible spectrophotometer absorption spectrum confirmed Met-AgNPs synthesis. FTIR study showed functional group peaks, indicating Met-AgNPs reduction and capping. SEM-EDAX and HR-TEM revealed the nanoparticles’ spherical form, with EDAX revealing silver atoms at 3 keV. XRD confirmed Met-AgNP crystalline structure. DLS and zeta potential measurements showed that synthesized Met-AgNPs were 59.04 nm and stable. Simultaneously, the ethyl acetate extract underwent rigorous analysis to identify secondary metabolites, utilizing UV-visible spectrophotometer, GC-MS, and FTIR techniques. The synthesized Met-AgNPs showed strong antibacterial action against P. aeruginosa (14.06 ± 0.11 mm at 10mg/mL) and excellent antifungal activity against A. brasiliensis (14.1 ± 0.17mm). Also, active Met-AgNPs inhibited DPPH and ABTS with IC50 values of 5.329 and 7.191 μg/mL. Met-AgNPs were cytotoxic up to 52.95% and 46.57% at 200 μg/mL in MTT tests. Nanoparticles also showed significant anti-inflammatory effects in in vitro and in vivo studies. In conclusion, this research strongly supports the pharmaceutical and biomedical potential of the synthesized Met-AgNPs, underscoring their importance as valuable agents in various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data Availability

The authors declare that all relevant data supporting the findings of the study are available within the article.

References

  1. Sharif, M. S., Hameed, H., Waheed, A., Tariq, M., Afreen, A., Kamal, A., Mahmoud, E. A., Elansary, H. O., Saqib, S., & Zaman, W. (2023). Biofabrication of Fe3O4 Nanoparticles from Spirogyra hyalina and Ajuga bracteosa and their antibacterial applications. Molecules, 28, 1–14. https://doi.org/10.3390/molecules28083403

    Article  Google Scholar 

  2. Chen, Y., Li, J., Lu, J., Ding, M., & Chen, Y. (2022). Synthesis and properties of poly (vinyl alcohol) hydrogels with high strength and toughness. Polymer Testing, 108, 107516.

    Article  Google Scholar 

  3. Yang, K., Geng, Q., Luo, Y., Xie, R., Sun, T., Wang, Z., Qin, L., Zhao, W., Liu, M., & Li, Y. (2022). Dysfunction of FadA-cAMP signalling decreases Aspergillus flavus resistance to antimicrobial natural preservative Perillaldehyde and AFB1 biosynthesis. Environmental Microbiology, 24, 1590–1607.

    Article  Google Scholar 

  4. Andrade, R. G., Veloso, S. R., & Castanheira, E. M. (2020). Shape anisotropic iron oxide-based magnetic nanoparticles: Synthesis and biomedical applications. International Journal of Molecular Sciences, 21, 2455.

    Article  Google Scholar 

  5. Chandankere, R., Chelliah, J., Subban, K., Vanitha, C., Shanadrahalli, P. A., Hossain, M., Yogesh, Z. C., & Qi, X. (2020). Pleiotropic functions and biological potentials of silver nanoparticles synthesized by an endophytic fungus. Frontiers in Bioengineering and Biotechnology, 8, 1–14. https://doi.org/10.3389/fbioe.2020.00095

    Article  Google Scholar 

  6. Janakiraman, V., Govindarajan, K., & Magesh, C. R. (2019). Biosynthesis of silver nanoparticles from endophytic fungi, and its cytotoxic activity. BioNanoScience, 9, 573–579. https://doi.org/10.1007/s12668-019-00631-1

    Article  Google Scholar 

  7. Singh, T., Jyoti, K., & Patnaik, A. (2017). Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. Journal, Genetic Engineering & Biotechnology, 15, 31–39. https://doi.org/10.1016/j.jgeb.2017.04.005

    Article  Google Scholar 

  8. Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13, 2981–2988. https://doi.org/10.1007/s11051-010-0193-y

    Article  Google Scholar 

  9. Saqib, S., Faryad, S., Afridi, M. I., Arshad, B., Younas, M., Naeem, M., Zaman, W., Ullah, F., Nisar, M., Ali, S., Elgorban, A. M., Syed, A., Elansary, H. O., & El-Abedin, T. K. Z. (2022). Bimetallic assembled silver nanoparticles impregnated in Aspergillus fumigatus extract damage the bacterial membrane surface and release cellular contents. Coatings, 12, 1505. https://doi.org/10.3390/coatings12101505

    Article  Google Scholar 

  10. Azam, Z., Ayaz, A., Younas, M., Qureshi, Z., Arshad, B., Zaman, W., Ullah, F., Nasar, M. Q., Bahadur, S., Irfan, M. M., Hussain, S., & Saqib, S. (2020). Microbial synthesized cadmium oxide nanoparticles induce oxidative stress and protein leakage in bacterial cells. Microbial Pathogenesis, 144, 104188. https://doi.org/10.1016/j.micpath.2020.104188

    Article  Google Scholar 

  11. Patil, R. H., Patil, M. P., & Maheshwari, V. L. (2016). Bioactive secondary metabolites from endophytic fungi: A review of biotechnological production and their potential applications. Studies in Natural Products Chemistry, 49, 189–205. https://doi.org/10.1016/B978-0-444-63601-0.00005-3

    Article  Google Scholar 

  12. Burger, W. C. (1981). Why are there so many kinds of flowering plants. Bioscience, 31(8), 572–581. https://doi.org/10.2307/1308218

    Article  Google Scholar 

  13. Bandara, W. M. S., Seneviratne, G., & Kulasooriya, S. A. (2006). Interactions among endophytic bacteria and fungi: Effects and potentials. Journal of Biosciences, 31(5), 645–650. https://doi.org/10.1007/BF02708417

    Article  Google Scholar 

  14. Manjunatha, B., Paul, S., Aggarwal, C., Bandeppa, S., Govindasamy, V., Dukare, A. S., & Annapurna, K. (2019). Diversity and tissue preference of osmotolerant bacterial endophytes associated with pearl millet genotypes having differential drought susceptibilities. Microbial Ecology, 77(3), 676–688. https://doi.org/10.1007/s00248-018-1257-2

    Article  Google Scholar 

  15. Yang, F., Zhang, R., Wu, X., Xu, T., Ahmad, S., Zhang, X., & Liu, Y. (2020). An endophytic strain of the genus Bacillus isolated from the seeds of maize (Zea mays L.) has antagonistic activity against maize pathogenic strains. Microbial Pathogenesis, 142, 104074. https://doi.org/10.1016/j.micpath.2020.104074

    Article  Google Scholar 

  16. Seetharaman, P. K., Chandrasekaran, R., Periakaruppan, R., Gnanasekar, S., Sivaperumal, S., Abd-Elsalam, K. A., Valis, M., & Kuca, K. (2021). Functional attributes of myco-synthesized AgNPs from endophytic fungi: A new implication in biomedical applications. Biology, 10, 1–20. https://doi.org/10.3390/biology10060473

    Article  Google Scholar 

  17. Ranjani, S., Ahmed, M. S., MubarakAli, D., Ramachandran, C., Kumar, N. S., & Hemalatha, S. (2020). Toxicity assessment of AgNPs synthesized using endophytic fungi against nosocomial infection. Inorganic and Nano-metal Chemistry, 51, 1–6. https://doi.org/10.1080/24701556.2020.1814332

    Article  Google Scholar 

  18. Devi, N. N., & Singh, M. S. (2013). GC-MS analysis of metabolites from endophytic fungus Colletotrichum gloeosporioides isolated from Phlogacanthus thyrsiflorus Nees. International Journal of Pharmaceutical Sciences Review and Research, 23, 392–395.

    Google Scholar 

  19. Sharma, A., Sagar, A., Rana, J., & Rani, R. (2022). Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro and Nano Systems Letters, 10, 2. https://doi.org/10.1186/s40486-022-00144-9

    Article  Google Scholar 

  20. Dinesh, B., Monisha, N., Shalini, H. R., Prathap, G. K., Poyya, J., Shantaram, M., Hampapura, J. S., Karigar, C. S., & Joshi, C. G. (2022). Antibacterial activity of AgNPs synthesized using endophytic fungus Penicillium cinnamopurpureum. Spectroscopy Latters, 142, 20–34. https://doi.org/10.1080/00387010.2021.2010764

    Article  Google Scholar 

  21. Vardhana, J., Aparna, A., & Ramarajan, S. (2018). Synthesis and antibacterial activity of silver nanoparticles from endophytic fungi Phyllosticta sp isolated from Amaranthus retroflexus - A plant weed. International Journal of Pharmaceutical Sciences Review and Research, 51, 48–52.

    Google Scholar 

  22. Govindappa, M., Dj, M., Vinaykiya, V., Bhoomika, V., Dutta, S., Pawar, R., & Raghavendra, V. B. (2022). Screening of antibacterial and antioxidant activity of biogenically synthesized silver nanoparticles from Alternaria alternata, endophytic fungus of Dendrophthoe falcata-a parasitic plant. Bionanosci, 12, 128–141. https://doi.org/10.1007/s12668-021-00932-4

    Article  Google Scholar 

  23. Sonbol, H., Mohammed, A., & Korany, S. M. (2022). Soil fungi as biomediator in silver nanoparticles formation and antimicrobial efficacy. International Journal of Nanomedicine, 17, 2843–2863. https://doi.org/10.2147/IJN.S356724

    Article  Google Scholar 

  24. Abdel-Azeem, A., Nada, A. A., O’Donovan, A., Thakur, V. K., & Elkelish, A. (2020). Mycogenic silver nanoparticles from endophytic Trichoderma atroviride with antimicrobial activity. Journal of Renewable Materials, 8, 171–185. https://doi.org/10.32604/jrm.2020.08960

    Article  Google Scholar 

  25. Fouda, A., Awad, M. A., ZE, A. L.-F., Gad, M. E., Al-Khalaf, A. A., Yahya, R., & Hamza, M. F. (2022a). Aspergillus flavus-mediated green synthesis of silver nanoparticles and evaluation of their antibacterial, anti-candida, acaricides, and photocatalytic activities. Catalysts, 12, 462. https://doi.org/10.3390/catal12050462

    Article  Google Scholar 

  26. Awad, M. A., Eid, A. M., Elsheikh, T. M. Y., Al-Faifi, Z. E., Saad, N., Sultan, M. H., Selim, S., Al-Khalaf, A. A., & Fouda, A. (2022). Mycosynthesis, characterization, and mosquitocidal activity of silver nanoparticles fabricated by Aspergillus niger Strain. Journal of Fungi, 8, 396. https://doi.org/10.3390/jof8040396

    Article  Google Scholar 

  27. Gemishev, O., Panayotova, M., Gicheva, G., & Mintcheva, N. (2022). Green synthesis of stable spherical monodisperse silver nanoparticles using a cell-free extract of Trichoderma reesei. Materials, 15, 481. https://doi.org/10.3390/ma15020481

    Article  Google Scholar 

  28. Fouda, A., Hassan, S. E., Eid, A. M., Abdel-Rahman, M. A., & Hamza, M. F. (2022b). Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain, Penicillium crustosum EP-1. Scientific Reports, 12, 11834. https://doi.org/10.1038/s41598-022-15903-2

    Article  Google Scholar 

  29. Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., & Fauzi, M. B. (2020). The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10, 1566.

    Article  Google Scholar 

  30. Sodimalla, T., & Yalavarthi, N. (2022). Biosynthesis of silver nanoparticles from Pseudomonas fluorescens and their antifungal activity against Aspergillus niger and Fusarium udum. Annals of Applied Biology, 181, 1–11. https://doi.org/10.1111/aab.12761

    Article  Google Scholar 

  31. Naghizadeh, A., Mizwari, Z. M., Ghoreishi, S. M., Lashgari, S., Mortazavi-Derazkola, S., & Rezaie, B. (2021). Biogenic and ecobenign synthesis of silver nanoparticles using jujube core extract and its performance in catalytic and pharmaceutical applications: Removal of industrial contaminants and in vitro antibacterial and anticancer activities. Environmental Technology and Innovation, 23, 101560.

    Article  Google Scholar 

  32. Fouda, A. (2016). Antibacterial and cytotoxicity effect of silver nanoparticles synthesized by Aspergillus flavus. Egyptian Journal of Biotechnology, 151–167.

  33. Kanjana, M., Kanimozhi, G., Udayakumar, R., & Panneerselvam, A. (2019). GC-MS analysis of bioactive compounds of endophytic fungi Chaetomium globosum, Cladosporium tenuissimum and Penicillium janthinellum. Journal of Biomedical and Pharmaceutical Sciences, 2, 123.

    Google Scholar 

  34. Netala, V. R., Bethu, S. M., Pushpalatha, B., Baki, V. B., Aishwarya, S., Rao, V., & Tartte, V. (2016). Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. International Journal of Nanomedicine, 11, 5683–5696. https://doi.org/10.2147/IJN.S112857

  35. Netala, V. R., Kotakadi, V. S., Bobbu, P., Gaddam, S. A., & Tartt, V. (2016). Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and antimicrobial studies. 3 Biotech, 6, 132. https://doi.org/10.1007/s13205-016-0433-7

    Article  Google Scholar 

  36. Rahi, D. K., & Parmar, A. S. (2014). Mycosynthesis of silver nanoparticles by an endophytic Penicillium species of Aloe vera root, evaluation of their antibacterial and antibiotic enhancing activity. International Journal of Nanomaterials and Biostructures, 4, 46–51.

    Google Scholar 

  37. Rani, R., Sharma, D., Chaturvedi, M., & Jp, Y. (2017). Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus. Journal of Nanomedicine and Nanotechnology, 8, 1000457. https://doi.org/10.4172/2157-7439.1000457

    Article  Google Scholar 

  38. Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

    Article  Google Scholar 

  39. Soni, N., & Prakash, S. (2015). Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles. Parasitology Research, 114, 1023–1030. https://doi.org/10.1007/s00436-014-4268-z

    Article  Google Scholar 

  40. Rahman, M. M., Islam, M. B., Biswas, M., & Khurshid Alam, A. H. M. (2015). In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Research Notes, 8, 1–9. https://doi.org/10.1186/s13104-015-1618-6

    Article  Google Scholar 

  41. Sreeram, N. P., Henning, S. M., & Niu, Y. (2006). Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. Journal of Agricultural and Food Chemistry, 54, 1599–1603. https://doi.org/10.1021/jf052857r

    Article  Google Scholar 

  42. Giridasappa, A., Ismail, S. M., & Rangappa, D. (2021). Antioxidant, antiproliferative and antihemolytic properties of phytofabricated silver nanoparticles using Simarouba glauca and Celastrus paniculatus extracts. Applied Nanoscience, 11, 2561–2576. https://doi.org/10.1007/s13204-021-02084-z

    Article  Google Scholar 

  43. Gupta, A. K., Parasar, D., Sagar, A., Choudhary, V., Chopra, B. S., Garg, R., & Ashish, K. N. (2015). Analgesic and anti-inflammatory properties of gelsolin in acetic acid induced writhing, tail immersion and carrageenan induced paw edema in mice. PLoS One, 10, e0135558. https://doi.org/10.1371/journal.pone.0135558

    Article  Google Scholar 

  44. Gunathilake, K., Ranaweera, K., & Rupasinghe, H. (2018). In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines, 6, 107. https://doi.org/10.3390/biomedicines6040107

    Article  Google Scholar 

  45. Bagur, H., Poojari, C. C., Melappa, G., Rangappa, R., Chandrasekhar, N., & Somu, P. (2020). Biogenically synthesized silver nanoparticles using endophyte rungal extract of Ocimum tenuiflorum and evaluation of biomedical properties. Journal of Cluster Science, 31, 1241–1255. https://doi.org/10.1007/s10876-019-01731-4

    Article  Google Scholar 

  46. Ghorbanzadeh, B., Mansouri, M., Hemmati, A., Naghizadeh, B., Mard, S., & Rezaie, A. (2015). A study of the mechanisms underlying the ant-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian journal pharmacology, 47, 292. https://doi.org/10.4103/0253-7613.157127

    Article  Google Scholar 

  47. Qiu, M., Xie, R., & Shi, Y. (2010). Isolation and identification of endophytic fungus SX01, a red pigment producer from Ginkgo biloba L. World Journal of Microbiology and Biotechnology, 26, 993–998. https://doi.org/10.1007/s11274-009-0261-6

    Article  Google Scholar 

  48. Chandra, H., Kumari, P., Prasad, R., Gupta, S. C., & Yadav, S. (2021). Antioxidant and antimicrobial activity displayed by a fungal endophyte Alternaria alternata isolated from Picrorhiza kurroa from Garhwal Himalayas, India. Biocatalysis and Agricultural Biotechnology, 33, 101955.

    Article  Google Scholar 

  49. Kar, D., Barik, H., Kuanar, A., Mukhi, S., Pattnaik, P. K., Bhuyan, R., & Panda, M. K. (2021). Gas chromatographic methods coupled to mass spectrometry detection of leaf extracts of Symplocos racemosa Roxb Isr. Journal of Plant Science, 1, 1–10.

    Google Scholar 

  50. Hateet, R. R. (2020). GC-MS Analysis of extract for endophytic fungus Acremonium coenophialum and its Antimicrobial and Antidiabetic. Research Journal of Pharmacy and Technology, 13, 119. https://doi.org/10.5958/0974-360X.2020.00024.4

    Article  Google Scholar 

  51. Bhattacharjee, S., Debnath, G., & Das, A. R. (2017). Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8, 045008. https://doi.org/10.1088/2043-6254/aa84ec

    Article  Google Scholar 

  52. Aslam, M., Fozia, F., Gul, A., Ahmad, I., Ullah, R., Bari, A., Mothana, R. A., & Hussain, H. (2021). Phyto-extract-mediated synthesis of silver nanoparticles using aqueous extract of Sanvitalia procumbens, and characterization, optimization and photocatalytic degradation of azo dyes orange G and Direct Blue-15. Molecules, 26, 6144. https://doi.org/10.3390/molecules26206144

    Article  Google Scholar 

  53. Bharathidasan, R., & Panneerselvam, A. (2012). Biosynthesis and characterization of silver nanoparticles using endophytic fungi Aspergillus concius, Penicillium janthinellum and Phomosis sp. International Journal of Pharmaceutical Sciences and Research, 14, 3163. https://doi.org/10.13040/IJPSR.0975-8232.3(9).3163-69

    Article  Google Scholar 

  54. Hu, X., Kandasamy, S., Tieyan, J., & Myeong-Hyeon, W. (2019). Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus. International Journal of Nanomedicine, 14, 3427–3438. https://doi.org/10.2147/IJN.S200817

    Article  Google Scholar 

  55. Nischitha, R., & Shivanna, M. B. (2022). Screening of secondary metabolites and antioxidant potential of endophytic fungus Penicillium citrinum and host Digitaria bicornis by spectrophotometric and electrochemical methods. Archives of Microbiology, 204, 206. https://doi.org/10.1007/s00203-022-02795-z

    Article  Google Scholar 

  56. Prasher, I. B., & Dhanda, R. K. (2017). GC-MS analysis of secondary metabolites of endophytic Nigrospora sphaerica isolated from Parthenium hysterophorus. International Journal of Pharmaceutical Sciences Review and Research, 44, 217–223.

    Google Scholar 

  57. Nischitha, R., & Shivanna, M. B. (2021). Metabolite fingerprinting, in vitro antimicrobial and antioxidant activities and in-silico docking in Alloteropsis cimicina and its endophytic fungus Penicillium pinophilum. Molecular Biology Reports, 48, 4021–4037. https://doi.org/10.1007/s11033-021-06410-0

    Article  Google Scholar 

  58. Gill, H., & Vasundhara, M. (2019). Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World Journal of Microbiology and Biotechnology, 35, 74. https://doi.org/10.1007/s11274-019-2651-8

    Article  Google Scholar 

  59. Devi, N. (2014). Bioactive metabolites from an endophytic fungus Penicillium sp. isolated from Centella asiatica. Current Research in Environmental & Applied Mycology, 4, 34–43. https://doi.org/10.5943/cream/4/1/3

    Article  Google Scholar 

  60. Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indian Journal of Science and Technology, 4, 97. https://doi.org/10.17509/ijost.v4i1.15806

    Article  Google Scholar 

  61. Akther, T., Mathipi, V., Kumar, N. S., Davoodbasha, M., & Srinivasan, H. (2019). Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Environmental Science and Pollution Research, 26, 13649–13657. https://doi.org/10.1007/s11356-019-04718-w

    Article  Google Scholar 

  62. Ramalingmam, P., Muthukrishnan, S., & Thangaraj, P. (2015). Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential. Journal of Nanoscience and Nanoengineering, 1, 241–247 http://www.aiscience.org/journal/jnn

    Google Scholar 

  63. Govindappa, M., Lavanya, M., & Aishwarya, P. (2020). Synthesis and characterization of endophytic fungi, Cladosporium perangustum mediated AgNPs and their antioxidant, anticancer and nano-toxicological Study. BioNanoScience, 10, 928–941. https://doi.org/10.1007/s12668-020-00719-z

    Article  Google Scholar 

  64. Popli, D., Anil, V., Subramanyam, A. B., Namratha, M. N., Ranjitha, V. R., Rao, S. N., Rai, R. V., & Govindappa, M. (2018). Endophyte fungi, Cladosporium species-mediated synthesis of AgNPs possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artificial cells, nanomedicine, and biotechnology, 46, 676–683. https://doi.org/10.1080/21691401.2018.1434188

    Article  Google Scholar 

  65. Zhang, X.-F., Liu, Z.-G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International journal of molecular sciences, 17, 1534. https://doi.org/10.3390/ijms17091534

    Article  Google Scholar 

  66. Azmath, P., Baker, S., Rakshith, D., & Satish, S. (2016). Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharmaceutical Journal, 24, 140–146. https://doi.org/10.1016/j.jsps.2015.01.008

    Article  Google Scholar 

  67. Farsi, M., & Farokhi, S. (2018). Biosynthesis of antibacterial silver nanoparticles by endophytic fungus Nemania sp. isolated from Taxus baccata L. (Iranian Yew). Zahedan Journal of Research in Medical Sciences, 20(6), e57916. https://doi.org/10.5812/zjrms.57916

  68. Yugandhar, P., Haribabu, R., & Savithramma, N. (2015). Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech, 5, 1031–1039. https://doi.org/10.1007/s13205-015-0307-4

    Article  Google Scholar 

  69. Nallappan, D., Fauzi, A. N., Krishna, B. S., Kumar, B. P., Reddy, A. V. K., Syed, T., Reddy, C. S., Yaacob, N. S., & Rao, P. V. (2021). Green biosynthesis, antioxidant, antibacterial, and anticancer activities of AgNPs of Luffa acutangula leaf extract. BioMed Research International, 2021, 1–28. https://doi.org/10.1155/2021/5125681

    Article  Google Scholar 

  70. Vane, J. R., & Botting, R. M. (1995). New insights into the mode of action of anti-inflammatory drugs. Inflammation Research, 44, 1–10. https://doi.org/10.1007/BF01630479

    Article  Google Scholar 

  71. Das, S. K., Behera, S., Patra, J. K., & Thatoi, H. (2019). Green synthesis of sliver nanoparticles using Avicennia officinalis and Xylocarpus granatum extracts and in vitro evaluation of antioxidant, antidiabetic and anti-inflammatory activities. Journal of Cluster Science, 30, 1103–1113. https://doi.org/10.1007/s10876-019-01571-2

    Article  Google Scholar 

  72. Govindappa, M., Farheen, H., Chandrappa, C. P., Channabasava, R. R. V., & Raghavendra, V. B. (2016). Mycosynthesis of AgNPs using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7, 1–9. https://doi.org/10.1088/2043-6262/7/3/035014

    Article  Google Scholar 

  73. El-Rafie, H. M., & Hamed, M. A. (2014). Antioxidant and anti-inflammatory activities of AgNPs biosynthesized from aqueous leaves extracts of four Terminalia species. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5, 1–11. https://doi.org/10.1088/2043-6262/5/3/035008

    Article  Google Scholar 

Download references

Acknowledgments

The authors heartily acknowledge Kuvempu University, Karnataka, INDIA, for financial support to carry out the research work. The Department of Applied Sciences (Nanotechnology), Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur, India, for providing facilities to perform FTIR analysis. The Sophisticated Analytical Instrument Facility (SAIF) at Karnatak University Dharwad, Karnataka, India, for providing facilities to perform SEM-EDAX and XRD. The Head Center for Nanotechnology, University Agriculture Sciences (UAS), Raichur, Karnataka, India, for providing facilities to perform particle size analysis by dynamic light scattering (DLS) and Zeta potential. Indian Institute of Science, Bengaluru, Karnataka, India, for providing facilities to perform HR-TEM. Averin Biotech Labs, Bangalore, INDIA., for providing facilities to perform MTT assay.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

MD—analysis of research work in laboratory, methodology, software, data analysis, and manuscript writing; MGT, NS guided for the experimentation of anti-inflammatory activity and reviewing; SHV—manuscript correction and editing; AS—data interpretation and reviewing; NG—phylogenetic analysis, reviewing, TB—design and correction of research work.

Corresponding author

Correspondence to Thippeswamy Basaiah.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics Approval and Consent to Participate

Approval number was consented to by the Office of Institutional Animal Ethical Committee (IAEC) (Reg. No. 123/PO/C/99/CPCSEA under the rules 5(a) of the “Breeding of experiments on animal (control and supervision rules 1998”, Ref. SSCPT/IAEC.Clear/152/2016-17)).

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadayya, M., Gowri Thippeswamy, M., Shivaiah, N. et al. Biological Potential of Silver Nanoparticles Synthesized by an Endophytic Fungus Metapochonia suchlasporia-KUMBMDBT-23. BioNanoSci. 13, 1790–1816 (2023). https://doi.org/10.1007/s12668-023-01177-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01177-z

Keywords

Navigation