Skip to main content

Advertisement

Log in

Theranostic Polymeric Nanoparticles for Cancer

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanotechnology has contributed significantly in the development of nanoparticles for therapy and imaging of a variety of cancer types. The low systemic toxicity of most theranostic nanoparticles can lead to effective cancer treatment, monitoring and imaging, with improved outcomes compared to conventional cancer treatment and imaging options. The current review highlights the major factors associated with the development of polymeric nanoparticles in cancer theranostics, a field which has gained significant interest in recent years. Fundamental aspects for the synthesis, modification, and characterization of polymeric nanoparticles are discussed with key advancements in passive and active targeting using such nanoparticles provided. Also indirect factors such as physical and biological barriers in biological systems where particles are used for cancer theranostics are presented. The goal of this review is to provide researchers sufficient scientific information for constructing effective nanocarriers for cancer therapy and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable

Abbreviations

PEG:

polyethylene glycol

PDLLA:

poly(d,l-lactic acid)

PLGA:

poly(lactic-co-glycolic acid)

PCL:

poly(ε-caprolactone)

PVA:

polyvinyl alcohol

MPS:

mononuclear phagocytic system

IFP:

interstitial fluid pressure

ECM:

extracellular matrix

EPR:

enhanced permeability and retention

O/W:

oil-in-water

W/O/W:

water-in-oil-in-water

PDMS:

polydimethylsiloxane

PRINT:

Particle Replication In Non-wetting Templates

MNPs:

magnetite nanoparticles

MRI:

magnetic resonance imaging

PHBV:

poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PDA:

polydopamine

PTX:

paclitaxel

RGD:

arginine-glycine-aspartic acid

DIR or DiR:

1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide

FITC:

fluorescein isothiocyanate

PCLA-PEG-PCLA:

poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide)

DOX:

doxorubicin

Dox:

doxorubicin

Ce6:

chlorin e6

PDT:

photodynamic therapy

PA:

photoacoustic

SRB:

sulforhodamine B

CUR:

curcumin

RNA:

ribonucleic acid

Apts:

aptamers

EpCAM:

epithelial cell adhesion molecule

PEI:

polyethylenimine

bDNA:

bulk DNA

SIM:

simvastatin

IONPs:

iron oxide nanoparticles

VCR:

vincristine

VRP:

verapamil

PDDA:

poly(dimethyldiallylammonium chloride)

Cy5.5:

cyanine5.5

PXN:

paxillin

gRNA:

guide RNA

HA:

hyaluronic acid

Gd-DTPA:

diethylenetriaminepentaacetic acid-gadolinium

Doc:

docetaxel

siRNA:

small interfering RNA

Tg:

6-thioguanine

BODIPY:

ethynyl-boron-dipyrromethene

SPIONs:

superparamagnetic iron oxide nanoparticles

EDC:

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

DCC:

dicyclohexylcarbodiimide

NHS:

N-hydroxysuccinimide

Sulfo-NHS:

N-hydroxysulfosuccinimide

SATA:

N-succinimidyl-S-acetylthioacetate

ROS:

reactive oxygen species

Pc:

phthalocyanine

pNIPAM:

poly(N-isopropylacrylamide)

PMMA:

poly(methyl methacrylate)

MPN:

metal-phenolic network

CS:

chitosan

AA:

acrylic acid

PPV:

poly(p-phenylenevinylene)

EGFR:

epidermal growth factor receptor

FA:

folic acid

Pdots:

polymer dots

PPy:

polypyrrole

AAC:

azide-alkyne cycloaddition

MPU:

multiblock polyurethane

DMSO:

dimethyl sulfoxide

NIR:

near-infrared

PTT:

photothermal therapy

ACQ:

aggregation caused quenching

MFI:

median fluorescence intensity

DEM:

dimethyl ester

OR-PAM:

optical-resolution photoacoustic microscopy

SDS:

sodium dodecyl sulfate

NIPAm:

N-isopropylacrylamide

BIS:

N,N′-methylenebisacrylamide

APS:

ammonium persulfate

TEMED:

tetramethylethylenediamine

LCST:

lower critical solution temperature

PCPDTBT:

poly[2,6-(4,4-bis-(2-ethylhexyl)−4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]

CP-NPs:

conjugated polymeric nanoparticles

DPBF:

1,3-Diphenylisobenzofuran

HPMA:

N-(2-hydroxypropylmethyl) acrylamide

CMC:

critical micelle concentration

DTT:

dithiothreitol

PDI:

polydispersity index

TGI:

tumor growth inhibition

MVD:

microvessel density

DPNs:

discoidal polymeric nanoparticles

USPIOs:

ultra-small super-paramagnetic iron oxide nanoparticles

RhB:

rhodamine B

nAChR:

nicotinic acetylcholine receptor

RVG:

rabies virus glycoprotein

THF:

tetrahydrofuran

PFBTDBT10:

poly[(9,9-dihexylfluorene)-co-2,1,3-benzothiadiazole]

ECM:

extracellular matrix

CMCh:

carboxymethyl chitosan

BAPE:

4-hydroxymethyl-pinacol phenylborate

CMCh-BAPE:

carboxymethyl chitosan and benzeneboronic acid pinacol ester

ICG:

indocyanine green

ApoE:

apolipoprotein-E

LDL:

low-density lipoprotein

US:

ultrasound

RF:

radio frequency

Gd:

gadolinium

SPIO:

superparamagnetic iron oxide

CT:

computed tomography

PET:

positron emission tomography

SPECT:

single-photon emission computerized tomography

LPHNs:

polymer-lipid hybrid nanoparticles

PSMs:

polymer-surfactant micelles

PSNPs:

polymer-surfactant nanoparticles

CDs:

cyclodextrins

PDCs:

Polymer-drug conjugates

Polysorbate 20:

polyoxyethylene sorbitan monolaurate

NEM:

nano-embedded particles

NLS:

nuclear localization sequence

PVOH:

polyvinyl alcohol

CuAAC:

copper-catalyzed azide-alkyne cycloaddition

pNIPAAm:

poly(N-isopropylacrylamide)

HSA:

human serum albumin

MEH-PPV:

poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene]

GSH:

glutathione

DAPI:

4′,6-diamidino-2-phenylindole

TFP:

thermoresponsive fluorescent particles

BPLP:

biodegradable photo-luminescent polymer

BPLP-Ser:

biodegradable photo-luminescent polymer with serine

SBC:

sodium bicarbonate

BPLP-SBC:

biodegradable photo-luminescent polymer with sodium bicarbonate

TFP-SBC:

thermoresponsive fluorescent particles with sodium bicarbonate

DI:

deionized

WBPLP-AH:

water-soluble BPLP-allylamine crosslinked polymer

MES:

2-(N-morpholino)ethanesulfonic acid

GFLG:

glycylphenylalanylleucylglycyl

RAFT:

reversible addition-fragmentation chain-transfer

CTA-GFLGKGLFG-CTA:

N-glycylphenylalanylleucylglycyl di-4-cyano-4-(phenylcarbonothioylthio)pentanoate

VA044:

2,2,-[azobis(1-methylethylidene)]bis[4,5-dihydro-1H-imidazole] dihydrochloride

MA-GFLG-PTX:

N-methacryloyl-glycylphenylalanylleucylglycyl-paclitaxel

PTEMA:

N-[2-(2-pyridyldithio)]ethyl methacrylamide

MR:

magnetic resonance

FI:

fluorescence imaging

DD:

drug delivery

USI:

ultrasound imaging

PAI:

photoacoustic imaging

RT:

radiotherapy

DTX:

docetaxel

PBS:

phosphate buffered saline

MC:

methylene chloride

W/O:

water-in-oil

GNPs:

gas-generating nanoparticles

PLG:

poly(d,l-lactide-co-glycolide)

DiI:

1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate

PCPDTBSe:

poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b′]dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl]

HDAPPs:

hybrid donor acceptor polymer particles

CRC:

colorectal cancer

BBB:

blood-brain barrier

PS 80:

polysorbate 80

ICGD:

indocyanine green derivative

SN38 or SN-38:

7-ethyl-10-hydroxycamptothecin

Pba:

pheophorbide a

CPT:

camptothecin

VEGFR:

vascular endothelial growth factor receptor

MTD::

maximum tolerated dose

NSCLC:

non-small cell lung cancer

PGlu:

polyglutamate

DLT:

dose-limiting toxicity

References

  1. Chakraborty, S., & Rahman, T. (2012). The difficulties in cancer treatment. Ecancermedicalscience., 6.

  2. Chen, X., Gole, J., Gore, A., He, Q., Lu, M., Min, J., et al. (2020). Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nature Communications., 11(1), 1–10.

    Google Scholar 

  3. Liston, D. R., & Davis, M. (2017). Clinically relevant concentrations of anticancer drugs: A guide for nonclinical studies guide to clinical exposures of anticancer drugs. Clinical Cancer Research., 23(14), 3489–3498.

    Article  Google Scholar 

  4. Meng, Q., & Li, Z. (2013). Molecular imaging probes for diagnosis and therapy evaluation of breast cancer. International Journal of Biomedical Imaging, 2013.

  5. Li, C., Liu, C., Fan, Y., Ma, X., Zhan, Y., Lu, X., et al. (2021). Recent development of near-infrared photoacoustic probes based on small-molecule organic dye. RSC Chemical Biology, 2(3), 743–758.

    Article  Google Scholar 

  6. Narvekar, M., Xue, H. Y., Eoh, J. Y., & Wong, H. L. (2014). Nanocarrier for poorly water-soluble anticancer drugs—barriers of translation and solutions. Aaps Pharmscitech, 15(4), 822–833.

    Article  Google Scholar 

  7. Janib, S. M., Moses, A. S., & MacKay, J. A. (2010). Imaging and drug delivery using theranostic nanoparticles. Advanced Drug Delivery Reviews, 62(11), 1052–1063.

    Article  Google Scholar 

  8. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. P., Acosta-Torres, L. S., et al. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 1–33.

    Article  Google Scholar 

  9. Siafaka, P. I., Okur, N. Ü., Karantas, I. D., Okur, M. E., & Gündoğdu, E. A. (2021). Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian Journal of Pharmaceutical Sciences, 16(1), 24–46.

    Article  Google Scholar 

  10. Maeda, H. (2013). The link between infection and cancer: Tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect. Cancer Science, 104(7), 779–789.

    Article  Google Scholar 

  11. Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F., et al. (2016). Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 1(5), 1–12.

    Article  Google Scholar 

  12. Finbloom, J. A., Sousa, F., Stevens, M. M., & Desai, T. A. (2020). Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Advanced Drug Delivery Reviews, 167, 89–108.

    Article  Google Scholar 

  13. Cooley, M., Sarode, A., Hoore, M., Fedosov, D. A., Mitragotri, S., & Gupta, A. S. (2018). Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale, 10(32), 15350–15364.

    Article  Google Scholar 

  14. Yu, E., Sancenón, F., Aznar, E., Martínez-Máñez, R., Marcos, M. D., Hajipour, M. J., et al. (2017). Future perspective on the smart delivery of biomolecules. Drug Delivery Systems, 1, 363.

    Article  Google Scholar 

  15. Jain, R. K., & Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology, 7(11), 653–664.

    Article  Google Scholar 

  16. Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge, S., et al. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. The American Journal of Pathology, 156(4), 1363–1380.

    Article  Google Scholar 

  17. Kulkarni, S. A., & Feng, S.-S. (2013). Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharmaceutical Research, 30(10), 2512–2522.

    Article  Google Scholar 

  18. Faraji, A. H., & Wipf, P. (2009). Nanoparticles in cellular drug delivery. Bioorganic & Medicinal Chemistry, 17(8), 2950–2962.

    Article  Google Scholar 

  19. Zhong, Q., Merkel, O. M., Reineke, J. J., & da Rocha, S. R. (2016). Effect of the route of administration and PEGylation of poly (amidoamine) dendrimers on their systemic and lung cellular biodistribution. Molecular Pharmaceutics, 13(6), 1866–1878.

    Article  Google Scholar 

  20. Battaglia, L., Panciani, P. P., Muntoni, E., Capucchio, M. T., Biasibetti, E., De Bonis, P., et al. (2018). Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opinion on Drug Delivery, 15(4), 369–378.

    Article  Google Scholar 

  21. Bazak, R., Houri, M., El Achy, S., Kamel, S., & Refaat, T. (2015). Cancer active targeting by nanoparticles: a comprehensive review of literature. Journal of Cancer Research and Clinical Oncology, 141(5), 769–784.

    Article  Google Scholar 

  22. Nag, O. K., & Delehanty, J. B. (2019). Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics, 11(10), 543.

    Article  Google Scholar 

  23. Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 11(6), 673–692.

    Article  Google Scholar 

  24. Kou, L., Bhutia, Y. D., Yao, Q., He, Z., Sun, J., & Ganapathy, V. (2018). Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Frontiers in Pharmacology, 9, 27.

    Article  Google Scholar 

  25. Boedtkjer, E., & Pedersen, S. F. (2020). The acidic tumor microenvironment as a driver of cancer. Annual Review of Physiology, 82, 103–126.

    Article  Google Scholar 

  26. Wu, W., Luo, L., Wang, Y., Wu, Q., Dai, H.-B., Li, J.-S., et al. (2018). Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics, 8(11), 3038.

    Article  Google Scholar 

  27. Li, M., Zhao, G., Su, W.-K., & Shuai, Q. (2020). Enzyme-responsive nanoparticles for anti-tumor drug delivery. Frontiers in Chemistry, 8, 647.

    Article  Google Scholar 

  28. Ferretti, S., Allegrini, P. R., Becquet, M. M., & McSheehy, P. M. (2009). Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics. Neoplasia, 11(9), 874–881.

    Article  Google Scholar 

  29. Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33(9), 941–951.

    Article  Google Scholar 

  30. Li, M., Zhang, Y., Zhang, Q., & Li, J. (2022). Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Materials Today Bio, 100364.

  31. Siemann, D. W. (2011). The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treatment Reviews, 37(1), 63–74.

    Article  Google Scholar 

  32. Kalyane, D., Raval, N., Maheshwari, R., Tambe, V., Kalia, K., & Tekade, R. K. (2019). Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Materials Science and Engineering: C, 98, 1252–1276.

    Article  Google Scholar 

  33. Wu, S., Zhu, W., Thompson, P., & Hannun, Y. A. (2018). Evaluating intrinsic and non-intrinsic cancer risk factors. Nature Communications, 9(1), 1–12.

    Google Scholar 

  34. Anand, P., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., et al. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25(9), 2097–2116.

    Article  Google Scholar 

  35. Ensign, L. M., Cone, R., & Hanes, J. (2012). Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews, 64(6), 557–570.

    Article  Google Scholar 

  36. Witten, J., & Ribbeck, K. (2017). The particle in the spider's web: Transport through biological hydrogels. Nanoscale, 9(24), 8080–8095.

    Article  Google Scholar 

  37. Neagu, M., Piperigkou, Z., Karamanou, K., Engin, A. B., Docea, A. O., Constantin, C., et al. (2017). Protein bio-corona: critical issue in immune nanotoxicology. Archives of Toxicology, 91(3), 1031–1048.

    Article  Google Scholar 

  38. Trimble, W. S., & Grinstein, S. (2015). Barriers to the free diffusion of proteins and lipids in the plasma membrane. Journal of Cell Biology, 208(3), 259–271.

    Article  Google Scholar 

  39. Mulhall, H. J., Hughes, M. P., Kazmi, B., Lewis, M. P., & Labeed, F. H. (2013). Epithelial cancer cells exhibit different electrical properties when cultured in 2D and 3D environments. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(11), 5136–5141.

    Article  Google Scholar 

  40. Chen, B., Le, W., Wang, Y., Li, Z., Wang, D., Ren, L., et al. (2016). Targeting negative surface charges of cancer cells by multifunctional nanoprobes. Theranostics, 6(11), 1887.

    Article  Google Scholar 

  41. Augustine, R., Hasan, A., Primavera, R., Wilson, R. J., Thakor, A. S., & Kevadiya, B. D. (2020). Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materials Today Communications, 25, 101692.

    Article  Google Scholar 

  42. Sahay, G., Alakhova, D. Y., & Kabanov, A. V. (2010). Endocytosis of nanomedicines. Journal of Controlled Release, 145(3), 182–195.

    Article  Google Scholar 

  43. Pelkmans, L., & Helenius, A. (2002). Endocytosis via caveolae. Traffic, 3(5), 311–320.

    Article  Google Scholar 

  44. Kirkham, M., Parton, R. G., et al. (2005). Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1745(3), 273–286.

    Article  Google Scholar 

  45. Rennick, J. J., Johnston, A. P., & Parton, R. G. (2021). Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nature Nanotechnology, 16(3), 266–276.

    Article  Google Scholar 

  46. Means, N., Elechalawar, C. K., Chen, W. R., Bhattacharya, R., & Mukherjee, P. (2021). Revealing macropinocytosis using nanoparticles. Molecular Aspects of Medicine, 100993.

  47. Liu, C.-G., Han, Y.-H., Kankala, R. K., Wang, S.-B., & Chen, A.-Z. (2020). Subcellular performance of nanoparticles in cancer therapy. International Journal of Nanomedicine, 15, 675.

    Article  Google Scholar 

  48. Vaughan, H. J., Green, J. J., & Tzeng, S. Y. (2020). Cancer-targeting nanoparticles for combinatorial nucleic acid delivery. Advanced Materials, 32(13), 1901081.

    Article  Google Scholar 

  49. Jin, Y., Zakeri, S. E., Bahal, R., & Wiemer, A. J. (2022). New technologies bloom together for bettering cancer drug conjugates. Pharmacological Reviews, 74(3), 680–711.

    Article  Google Scholar 

  50. Ughachukwu P, Unekwe P. Efflux Pump. Mediated Resistance in Chemotherapy. Annals of Medical and Health Sciences Research, 2(2):191-198.

  51. Perumal, V., Sivakumar, P. M., Zarrabi, A., Muthupandian, S., Vijayaraghavalu, S., Sahoo, K., et al. (2019). Near infra-red polymeric nanoparticle based optical imaging in Cancer diagnosis. Journal of Photochemistry and Photobiology B: Biology, 199, 111630.

    Article  Google Scholar 

  52. Bu, L., Ma, X., Tu, Y., Shen, B., & Cheng, Z. (2013). Optical image-guided cancer therapy. Current Pharmaceutical Biotechnology, 14(8), 723–732.

    Article  Google Scholar 

  53. Mi, P. (2020). Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 10(10), 4557.

    Article  Google Scholar 

  54. Reisch, A., & Klymchenko, A. S. (2016). Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging. Small, 12(15), 1968–1992.

    Article  Google Scholar 

  55. Yang, Y., Tu, D., Zhang, Y., Zhang, P., & Chen, X. (2021). Recent advances in design of lanthanide-containing NIR-II luminescent nanoprobes. Iscience, 24(2), 102062.

    Article  Google Scholar 

  56. Wu, Z., Midgley, A. C., Kong, D., & Ding, D. (2022). Organic persistent luminescence imaging for biomedical applications. Materials Today Bio, 100481.

  57. Yusefi, H., & Helfield, B. (2022). Ultrasound contrast imaging: Fundamentals and emerging technology. Frontiers in Physics, 100.

  58. Duan, L., Yang, L., Jin, J., Yang, F., Liu, D., Hu, K., et al. (2020). Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics, 10(2), 462.

    Article  Google Scholar 

  59. Fu, L., & Ke, H.-T. (2016). Nanomaterials incorporated ultrasound contrast agents for cancer theranostics. Cancer Biology & Medicine, 13(3), 313.

    Article  Google Scholar 

  60. Weber, J., Beard, P. C., & Bohndiek, S. E. (2016). Contrast agents for molecular photoacoustic imaging. Nature Methods, 13(8), 639–650.

    Article  Google Scholar 

  61. Upputuri, P. K., & Pramanik, M. (2020). Recent advances in photoacoustic contrast agents for in vivo imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 12(4), e1618.

    Google Scholar 

  62. Weishaupt, D., Köchli, V. D., Marincek, B., Froehlich, J. M., Nanz, D., & Pruessmann, K. P. (2006). How does MRI work?: an introduction to the physics and function of magnetic resonance imaging. Springer.

    Google Scholar 

  63. Grover, V. P., Tognarelli, J. M., Crossey, M. M., Cox, I. J., Taylor-Robinson, S. D., & McPhail, M. J. (2015). Magnetic resonance imaging: principles and techniques: lessons for clinicians. Journal of Clinical and Experimental Hepatology, 5(3), 246–255.

    Article  Google Scholar 

  64. Gauger, A. J., Hershberger, K. K., & Bronstein, L. M. (2020). Theranostics based on magnetic nanoparticles and polymers: intelligent design for efficient diagnostics and therapy. Frontiers in Chemistry, 8, 561.

    Article  Google Scholar 

  65. Brito, B., Price, T. W., Gallo, J., Bañobre-López, M., & Stasiuk, G. J. (2021). Smart magnetic resonance imaging-based theranostics for cancer. Theranostics, 11(18), 8706.

    Article  Google Scholar 

  66. Nyström, A. M. (2012). Update on Polymer Based Nanomedicine. Smithers Rapra.

    Google Scholar 

  67. Cormode, D. P., Naha, P. C., & Fayad, Z. A. (2014). Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media & Molecular Imaging, 9(1), 37–52.

    Article  Google Scholar 

  68. Lusic, H., & Grinstaff, M. W. (2013). X-ray-computed tomography contrast agents. Chemical Reviews, 113(3), 1641–1666.

    Article  Google Scholar 

  69. Livieratos, L. (2012). Basic principles of SPECT and PET imaging. radionuclide and hybrid bone. Imaging, 345–359.

  70. Unterrainer, M., Eze, C., Ilhan, H., Marschner, S., Roengvoraphoj, O., Schmidt-Hegemann, N.-S., et al. (2020). Recent advances of PET imaging in clinical radiation oncology. Radiation Oncology, 15(1), 1–15.

    Article  Google Scholar 

  71. Crișan, G., Moldovean-Cioroianu, N. S., Timaru, D.-G., Andrieș, G., Căinap, C., & Chiș, V. (2022). Radiopharmaceuticals for PET and SPECT imaging: A literature review over the last decade. International Journal of Molecular Sciences, 23(9), 5023.

    Article  Google Scholar 

  72. Wu, S., Helal-Neto, E., Matos, A. P. S., Jafari, A., Kozempel, J., Silva, Y. J. A., et al. (2020). Radioactive polymeric nanoparticles for biomedical application. Drug Delivery, 27(1), 1544–1561.

    Article  Google Scholar 

  73. Parveen, S., & Sahoo, S. K. (2008). Polymeric nanoparticles for cancer therapy. Journal of Drug Targeting, 16(2), 108–123.

    Article  Google Scholar 

  74. Letchford, K., & Burt, H. (2007). A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European Journal of Pharmaceutics and Biopharmaceutics, 65(3), 259–269.

    Article  Google Scholar 

  75. Elsabahy, M., Heo, G. S., Lim, S.-M., Sun, G., & Wooley, K. L. (2015). Polymeric nanostructures for imaging and therapy. Chemical Reviews, 115(19), 10967–11011.

    Article  Google Scholar 

  76. Zhang, X., Liang, T., & Ma, Q. (2021). Layer-by-Layer assembled nano-drug delivery systems for cancer treatment. Drug Delivery, 28(1), 655–669.

    Article  Google Scholar 

  77. Lima, A. L., Gratieri, T., Cunha-Filho, M., & Gelfuso, G. M. (2022). Polymeric nanocapsules: A review on design and production methods for pharmaceutical purpose. Methods, 199, 54–66.

    Article  Google Scholar 

  78. Das, R., Kumar, H., Choithramani, A., Bothra, G., & Shard, A. (2022). Polymeric nanoparticles to entrap natural drugs for cancer therapy. Polymeric Nanoparticles for the Treatment of Solid Tumors, 167–211.

  79. Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., et al. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 46(14), 4218–4244.

    Article  Google Scholar 

  80. Mendoza-Muñoz, N., Alcalá-Alcala, S., & Quintanar-Guerrero, D. (2016). preparation of polymer nanoparticles by the emulsification-solvent evaporation method: From Vanderhoff’s pioneer approach to recent adaptations. Polymer Nanoparticles for Nanomedicines: A guide for their design. Preparation and Development, 87–121.

  81. Yan, X., Bernard, J., & Ganachaud, F. (2021). Nanoprecipitation as a simple and straightforward process to create complex polymeric colloidal morphologies. Advances in Colloid and Interface Science, 294, 102474.

    Article  Google Scholar 

  82. Tao, J., Chow, S. F., & Zheng, Y. (2019). Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Acta Pharmaceutica Sinica B, 9(1), 4–18.

    Article  Google Scholar 

  83. Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36(7), 887–913.

    Article  Google Scholar 

  84. Wang, Y., Byrne, J. D., Napier, M. E., & DeSimone, J. M. (2012). Engineering nanomedicines using stimuli-responsive biomaterials. >Advanced Drug Delivery Reviews, 64(11), 1021–1030.

    Article  Google Scholar 

  85. Upponi, J. R., Jerajani, K., Nagesha, D. K., Kulkarni, P., Sridhar, S., Ferris, C., et al. (2018). Polymeric micelles: theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials, 170, 26–36.

    Article  Google Scholar 

  86. Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., et al. (2021). Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release, 332, 312–336.

    Article  Google Scholar 

  87. Letchford, K., Zastre, J., Liggins, R., & Burt, H. (2004). Synthesis and micellar characterization of short block length methoxy poly (ethylene glycol)-block-poly (caprolactone) diblock copolymers. Colloids and Surfaces B: Biointerfaces, 35(2), 81–91.

    Article  Google Scholar 

  88. Hibino, M., Tanaka, K., Ouchi, M., & Terashima, T. (2021). Amphiphilic random-block copolymer micelles in water: Precise and dynamic self-assembly controlled by random copolymer association. Macromolecules, 55(1), 178–189.

    Article  Google Scholar 

  89. Schoubben, A., Ricci, M., & Giovagnoli, S. (2019). Meeting the unmet: From traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. Journal of Pharmaceutical Investigation, 49, 381–404.

    Article  Google Scholar 

  90. Torchilin, V. P. (2001). Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release, 73(2-3), 137–172.

    Article  Google Scholar 

  91. Fournier, E., Dufresne, M.-H., Smith, D. C., Ranger, M., & Leroux, J.-C. (2004). A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharmaceutical Research, 21, 962–968.

    Article  Google Scholar 

  92. Tyrrell, Z. L., Shen, Y., & Radosz, M. (2010). Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Progress in Polymer Science, 35(9), 1128–1143.

    Article  Google Scholar 

  93. Gaucher, G., Dufresne, M.-H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J.-C. (2005). Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release, 109(1-3), 169–188.

    Article  Google Scholar 

  94. Tomalia, D. A., Christensen, J. B., & Boas, U. (2012). Dendrimers, dendrons, and dendritic polymers: discovery, applications, and the future. Cambridge University Press.

    Book  Google Scholar 

  95. Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., et al. (2014). Dendrimers: synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 1–10.

    Article  Google Scholar 

  96. Saluja, V., Mishra, Y., Mishra, V., Giri, N., & Nayak, P. (2021). Dendrimers based cancer nanotheranostics: An overview. International Journal of Pharmaceutics, 600, 120485.

    Article  Google Scholar 

  97. Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Larrea GZ-Ld, Sosa-Ferreyra C, et al. (2014). Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. Journal of Nanomaterials 2014, 39-.

  98. Medina, S. H., & El-Sayed, M. E. (2009). Dendrimers as carriers for delivery of chemotherapeutic agents. Chemical Reviews, 109(7), 3141–3157.

    Article  Google Scholar 

  99. Maiti, P. K., Çaǧın, T., Wang, G., & Goddard, W. A. (2004). Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules, 37(16), 6236–6254.

    Article  Google Scholar 

  100. Mohammadi, M., Ramezani, M., Abnous, K., & Alibolandi, M. (2017). Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine. International Journal of Pharmaceutics, 519(1-2), 287–303.

    Article  Google Scholar 

  101. Liu, G.-Y., Chen, C.-J., & Ji, J. (2012). Biocompatible and biodegradable polymersomes as delivery vehicles in biomedical applications. Soft Matter, 8(34), 8811–8821.

    Article  Google Scholar 

  102. Simone, E. A., Dziubla, T. D., & Muzykantov, V. R. (2008). Polymeric carriers: role of geometry in drug delivery. Expert Opinion on Drug Delivery, 5(12), 1283–1300.

    Article  Google Scholar 

  103. Rideau, E., Dimova, R., Schwille, P., Wurm, F. R., & Landfester, K. (2018). Liposomes and polymersomes: a comparative review towards cell mimicking. Chemical Society Reviews, 47(23), 8572–8610.

    Article  Google Scholar 

  104. Robertson, J. D., Rizzello, L., Avila-Olias, M., Gaitzsch, J., Contini, C., Magoń, M. S., et al. (2016). Purification of nanoparticles by size and shape. Scientific Reports, 6(1), 1–9.

    Article  Google Scholar 

  105. O’Neil, C. P., Suzuki, T., Demurtas, D., Finka, A., & Hubbell, J. A. (2009). A novel method for the encapsulation of biomolecules into polymersomes via direct hydration. Langmuir, 25(16), 9025–9029.

    Article  Google Scholar 

  106. Lo, C. H., & Zeng, J. (2023). Application of polymersomes in membrane protein study and drug discovery: Progress, strategies, and perspectives. Bioengineering & Translational Medicine, 8(1), e10350.

    Article  Google Scholar 

  107. Lefley, J., Waldron, C., & Becer, C. R. (2020). Macromolecular design and preparation of polymersomes. Polymer Chemistry, 11(45), 7124–7136.

    Article  Google Scholar 

  108. Durymanov, M., & Reineke, J. (2018). Non-viral delivery of nucleic acids: Insight into mechanisms of overcoming intracellular barriers. Frontiers in Pharmacology, 9, 971.

    Article  Google Scholar 

  109. Vetter, V. C., & Wagner, E. (2022). Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. Journal of Controlled Release, 346, 110–135.

    Article  Google Scholar 

  110. Shim, M. S., & Kwon, Y. J. (2012). Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Advanced Drug Delivery Reviews, 64(11), 1046–1059.

    Article  Google Scholar 

  111. Zhang, R., Qin, X., Kong, F., Chen, P., & Pan, G. (2019). Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Delivery, 26(1), 328–342.

    Article  Google Scholar 

  112. Shah, S., Famta, P., Raghuvanshi, R. S., Singh, S. B., & Srivastava, S. (2022). Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloid and Interface Science Communications, 46, 100570.

    Article  Google Scholar 

  113. Teixeira, M., Carbone, C., & Souto, E. (2017). Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Progress in Lipid Research, 68, 1–11.

    Article  Google Scholar 

  114. Raffa, P., Wever, D. A. Z., Picchioni, F., & Broekhuis, A. A. (2015). Polymeric surfactants: synthesis, properties, and links to applications. Chemical Reviews., 115(16), 8504–8563.

    Article  Google Scholar 

  115. Nasef, A. M., Gardouh, A. R., & Ghorab, M. M. (2015). Polymeric nanoparticles: influence of polymer, surfactant and composition of manufacturing vehicle on particle size. World Journal of Pharmaceutical Sciences, 2308–2322.

  116. Karthic, A., Roy, A., Lakkakula, J., Alghamdi, S., Shakoori, A., Babalghith, A. O., et al. (2022). Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review. Frontiers in Cell and Developmental Biology., 10.

  117. Gadade, D. D., Rathi, P. B., Sangshetti, J. N., & Kulkarni, D. A. (2022). Multifunctional cyclodextrin nanoparticles: A promising theranostic tool for strategic targeting of cancer. Polysaccharide Nanoparticles. Elsevier, 485–515.

  118. Wang, Y., Xia, H., Chen, B., & Wang, Y. (2023). Rethinking nanoparticulate polymer–drug conjugates for cancer theranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 15(1), e1828.

    Google Scholar 

  119. Duncan, R., Vicent, M., Greco, F., & Nicholson, R. (2005). Polymer-drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocrine Related Cancer, 12(1), S189.

    Article  Google Scholar 

  120. Grillo, R., Gallo, J., Stroppa, D. G., Carbó-Argibay, E., Lima, R., Fraceto, L. F., et al. (2016). Sub-micrometer magnetic nanocomposites: insights into the effect of magnetic nanoparticles interactions on the optimization of SAR and MRI performance. ACS Applied Materials & Interfaces, 8(39), 25777–25787.

    Article  Google Scholar 

  121. Wu, M., Zhong, C., Zhang, Q., Wang, L., Wang, L., Liu, Y., et al. (2021). pH-responsive delivery vehicle based on RGD-modified polydopamine-paclitaxel-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for targeted therapy in hepatocellular carcinoma. Journal of Nanobiotechnology, 19(1), 1–17.

    Article  Google Scholar 

  122. Hu, D., Chen, L., Qu, Y., Peng, J., Chu, B., Shi, K., et al. (2018). Oxygen-generating hybrid polymeric nanoparticles with encapsulated doxorubicin and chlorin e6 for trimodal imaging-guided combined chemo-photodynamic therapy. Theranostics, 8(6), 1558.

    Article  Google Scholar 

  123. Jaidev, L., Krishnan, U. M., & Sethuraman, S. (2015). Gemcitabine loaded biodegradable PLGA nanospheres for in vitro pancreatic cancer therapy. Materials Science and Engineering: C, 47, 40–47.

    Article  Google Scholar 

  124. Brandhonneur, N., Hatahet, T., Amela-Cortes, M., Molard, Y., Cordier, S., & Dollo, G. (2018). Molybdenum cluster loaded PLGA nanoparticles: An innovative theranostic approach for the treatment of ovarian cancer. European Journal of Pharmaceutics and Biopharmaceutics, 125, 95–105.

    Article  Google Scholar 

  125. Li, L., Xiang, D., Shigdar, S., Yang, W., Li, Q., Lin, J., et al. (2014). Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. International Journal of Nanomedicine, 9, 1083.

    Google Scholar 

  126. Keil, T. W., Feldmann, D. P., Costabile, G., Zhong, Q., da Rocha, S., & Merkel, O. M. (2019). Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 143, 61–69.

    Article  Google Scholar 

  127. Anzar, N., Mirza, M. A., Anwer, K., Khuroo, T., Alshetaili, A. S., Alshahrani, S. M., et al. (2018). Preparation, evaluation and pharmacokinetic studies of spray dried PLGA polymeric submicron particles of simvastatin for the effective treatment of breast cancer. Journal of Molecular Liquids, 249, 609–616.

    Article  Google Scholar 

  128. Kucharczyk, K., Rybka, J. D., Hilgendorff, M., Krupinski, M., Slachcinski, M., Mackiewicz, A., et al. (2019). Composite spheres made of bioengineered spider silk and iron oxide nanoparticles for theranostics applications. PLoS One, 14(7), e0219790.

    Article  Google Scholar 

  129. Song, X. R., Cai, Z., Zheng, Y., He, G., Cui, F. Y., Gong, D. Q., et al. (2009). Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. European Journal of Pharmaceutical Sciences, 37(3-4), 300–305.

    Article  Google Scholar 

  130. Xu, X., Koivisto, O., Liu, C., Zhou, J., Miihkinen, M., Jacquemet, G., et al. (2021). Effective delivery of the CRISPR/Cas9 system enabled by functionalized mesoporous silica nanoparticles for GFP-tagged Paxillin knock-in. Advanced Therapeutics, 4(1), 2000072.

    Article  Google Scholar 

  131. Tammaro, O., Costagliola di Polidoro, A., Romano, E., Netti, P. A., & Torino, E. (2020). A microfluidic platform to design multimodal PEG-crosslinked hyaluronic acid nanoparticles (PEG-cHANPs) for diagnostic applications. Scientific Reports, 10(1), 1–11.

    Google Scholar 

  132. Chu, K. S., Hasan, W., Rawal, S., Walsh, M. D., Enlow, E. M., Luft, J. C., et al. (2013). Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine: Nanotechnology, Biology and Medicine, 9(5), 686–693.

    Article  Google Scholar 

  133. Hasan, W., Chu, K., Gullapalli, A., Dunn, S. S., Enlow, E. M., Luft, J. C., et al. (2012). Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Letters, 12(1), 287–292.

    Article  Google Scholar 

  134. Chatterjee, M., Jaiswal, N., Hens, A., Mahata, N., & Chanda, N. (2020). Development of 6-Thioguanine conjugated PLGA nanoparticles through thioester bond formation: Benefits of electrospray mediated drug encapsulation and sustained release in cancer therapeutic applications. Materials Science and Engineering: C, 114, 111029.

    Article  Google Scholar 

  135. Rasekh, M., Ahmad, Z., Cross, R., Hernández-Gil, J., Wilton-Ely, J. D., & Miller, P. W. (2017). Facile preparation of drug-loaded tristearin encapsulated superparamagnetic iron oxide nanoparticles using coaxial electrospray processing. Molecular Pharmaceutics, 14(6), 2010–2023.

    Article  Google Scholar 

  136. Doane, T., & Burda, C. (2013). Nanoparticle mediated non-covalent drug delivery. Advanced Drug Delivery Reviews, 65(5), 607–621.

    Article  Google Scholar 

  137. Jain, A., & Cheng, K. (2017). The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. Journal of Controlled Release, 245, 27–40.

    Article  Google Scholar 

  138. Sivaram, A. J., Wardiana, A., Howard, C. B., Mahler, S. M., & Thurecht, K. J. (2018). Recent advances in the generation of antibody–nanomaterial conjugates. Advanced Healthcare Materials, 7(1), 1700607.

    Article  Google Scholar 

  139. Chen, E. Y., Liu, W. F., Megido, L., Díez, P., Fuentes, M., Fager, C., et al. (2018). Understanding and utilizing the biomolecule/nanosystems interface. Nanotechnologies in Preventive and Regenerative Medicine. Elsevier, 207–297.

  140. Martínez-Jothar, L., Doulkeridou, S., Schiffelers, R. M., Torano, J. S., Oliveira, S., van Nostrum, C. F., et al. (2018). Insights into maleimide-thiol conjugation chemistry: Conditions for efficient surface functionalization of nanoparticles for receptor targeting. Journal of Controlled Release, 282, 101–109.

    Article  Google Scholar 

  141. Cengiz, B., Ejderyan, N., & Sanyal, A. (2022). Functional polymeric coatings: thiol-maleimide ‘click’chemistry as a powerful surface functionalization tool. Journal of Macromolecular Science, Part A, 1–13.

  142. Kolb, H. C., Finn, M., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40(11), 2004–2021.

    Article  Google Scholar 

  143. Oria, L., Aguado, R., Pomposo, J. A., & Colmenero, J. (2010). A versatile “click” chemistry precursor of functional polystyrene nanoparticles. Advanced Materials, 22(28), 3038–3041.

    Article  Google Scholar 

  144. Yao, V. J., D'Angelo, S., Butler, K. S., Theron, C., Smith, T. L., Marchiò, S., et al. (2016). Ligand-targeted theranostic nanomedicines against cancer. Journal of Controlled Release, 240, 267–286.

    Article  Google Scholar 

  145. Conde, J., Dias, J. T., Grazú, V., Moros, M., Baptista, P. V., & de la Fuente, J. M. (2014). Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Frontiers in Chemistry, 2, 48.

    Article  Google Scholar 

  146. Zhang, L., Mazouzi, Y., Salmain, M., Liedberg, B., & Boujday, S. (2020). Antibody-gold nanoparticle bioconjugates for biosensors: synthesis, characterization and selected applications. Biosensors and Bioelectronics, 165, 112370.

    Article  Google Scholar 

  147. Yoon, H. Y., Lee, D., Lim, D. K., Koo, H., & Kim, K. (2022). Copper-free click chemistry: Applications in drug delivery, cell tracking, and tissue engineering. Advanced Materials, 34(10), 2107192.

    Article  Google Scholar 

  148. Pan, Z., Fang, D., Song, N., Song, Y., Ding, M., Li, J., et al. (2017). Surface distribution and biophysicochemical properties of polymeric micelles bearing gemini cationic and hydrophilic groups. ACS Applied Materials & Interfaces, 9(3), 2138–2149.

    Article  Google Scholar 

  149. Liu, J., Li, J., Zhang, Z., Weng, Y., Chen, G., Yuan, B., et al. (2014). Encapsulation of hydrophobic phthalocyanine with poly (N-isopropylacrylamide)/lipid composite microspheres for thermo-responsive release and photodynamic therapy. Materials, 7(5), 3481–3493.

    Article  Google Scholar 

  150. Zhu, H., & McShane, M. J. (2005). Loading of hydrophobic materials into polymer particles: implications for fluorescent nanosensors and drug delivery. Journal of the American Chemical Society, 127(39), 13448–13449.

    Article  Google Scholar 

  151. Wang, Z., Wang, L., Prabhakar, N., Xing, Y., Rosenholm, J. M., Zhang, J., et al. (2019). CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation ability for combined photothermal and siRNA therapy. Acta Biomaterialia, 86, 416–428.

    Article  Google Scholar 

  152. Ping, Y., Guo, J., Ejima, H., Chen, X., Richardson, J. J., Sun, H., et al. (2015). pH-responsive capsules engineered from metal–phenolic networks for anticancer drug delivery. Small, 11(17), 2032–2036.

    Article  Google Scholar 

  153. Wu, Y., Guo, J., Yang, W., Wang, C., & Fu, S. (2006). Preparation and characterization of chitosan–poly (acrylic acid) polymer magnetic microspheres. Polymer, 47(15), 5287–5294.

    Article  Google Scholar 

  154. Senthilkumar, T., Lv, F., Zhao, H., Liu, L., & Wang, S. (2019). Conjugated polymer nanogel binding anticancer drug through hydrogen bonds for sustainable drug delivery. ACS Applied Bio Materials, 2(12), 6012–6020.

    Article  Google Scholar 

  155. Ke, X., Tang, H., & Mao, H.-Q. (2019). Effective encapsulation of curcumin in nanoparticles enabled by hydrogen bonding using flash nanocomplexation. International Journal of Pharmaceutics, 564, 273–280.

    Article  Google Scholar 

  156. Huang, Y., Mao, K., Zhang, B., & Zhao, Y. (2017). Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Materials Science and Engineering: C, 70, 763–771.

    Article  Google Scholar 

  157. Chechetka, S. A., Yu, Y., Zhen, X., Pramanik, M., Pu, K., & Miyako, E. (2017). Light-driven liquid metal nanotransformers for biomedical theranostics. Nature Communications, 8(1), 1–19.

    Article  Google Scholar 

  158. Sirianni, R. W., Zheng, M.-Q., Patel, T. R., Shafbauer, T., Zhou, J., Saltzman, W. M., et al. (2014). Radiolabeling of poly (lactic-co-glycolic acid)(PLGA) nanoparticles with biotinylated F-18 prosthetic groups and imaging of their delivery to the brain with positron emission tomography. Bioconjugate Chemistry, 25(12), 2157–2165.

    Article  Google Scholar 

  159. Nash, M. A., Yager, P., Hoffman, A. S., & Stayton, P. S. (2010). Mixed stimuli-responsive magnetic and gold nanoparticle system for rapid purification, enrichment, and detection of biomarkers. Bioconjugate Chemistry, 21(12), 2197–2204.

    Article  Google Scholar 

  160. Feczkó, T., Piiper, A., Pleli, T., Schmithals, C., Denk, D., Hehlgans, S., et al. (2019). Theranostic sorafenib-loaded polymeric nanocarriers manufactured by enhanced gadolinium conjugation techniques. Pharmaceutics, 11(10), 489.

    Article  Google Scholar 

  161. Ke, C.-S., Fang, C.-C., Yan, J.-Y., Tseng, P.-J., Pyle, J. R., Chen, C.-P., et al. (2017). Molecular engineering and design of semiconducting polymer dots with narrow-band, near-infrared emission for in vivo biological imaging. ACS Nano, 11(3), 3166–3177.

    Article  Google Scholar 

  162. Asem, H., Zhao, Y., Ye, F., Barrefelt, Å., Abedi-Valugerdi, M., El-Sayed, R., et al. (2016). Biodistribution of biodegradable polymeric nano-carriers loaded with busulphan and designed for multimodal imaging. Journal of Nanobiotechnology, 14(1), 1–16.

    Article  Google Scholar 

  163. Hasannia, M., Abnous, K., Taghdisi, S. M., Nekooei, S., Ramezani, M., & Alibolandi, M. (2022). Synthesis of doxorubicin-loaded peptosomes hybridized with gold nanorod for targeted drug delivery and CT imaging of metastatic breast cancer. Journal of Nanobiotechnology, 20(1), 1–27.

    Article  Google Scholar 

  164. Sun, M., Guo, J., Hao, H., Tong, T., Wang, K., & Gao, W. (2018). Tumour-homing chimeric polypeptide-conjugated polypyrrole nanoparticles for imaging-guided synergistic photothermal and chemical therapy of cancer. Theranostics, 8(10), 2634.

    Article  Google Scholar 

  165. Jin, G., He, R., Liu, Q., Dong, Y., Lin, M., Li, W., et al. (2018). Theranostics of triple-negative breast cancer based on conjugated polymer nanoparticles. ACS Applied Materials & Interfaces, 10(13), 10634–10646.

    Article  Google Scholar 

  166. Soultan, A. H., Lambrechts, D., Verheyen, T., Van Gorp, H., Roeffaers, M. B., Smet, M., et al. (2019). Nanocarrier systems assembled from PEGylated hyperbranched poly (arylene oxindole). European Polymer Journal, 119, 247–259.

    Article  Google Scholar 

  167. Wei, J., Shuai, X., Wang, R., He, X., Li, Y., Ding, M., et al. (2017). Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis. Biomaterials, 145, 138–153.

    Article  Google Scholar 

  168. Liu, R., Zhao, J., Han, G., Zhao, T., Zhang, R., Liu, B., et al. (2017). Click-functionalized SERS nanoprobes with improved labeling efficiency and capability for cancer cell imaging. ACS Applied Materials & Interfaces, 9(44), 38222–38229.

    Article  Google Scholar 

  169. Li, Y., Wu, Y., Chen, J., Wan, J., Xiao, C., Guan, J., et al. (2019). A simple glutathione-responsive turn-on theranostic nanoparticle for dual-modal imaging and chemo-photothermal combination therapy. Nano Letters, 19(8), 5806–5817.

    Article  Google Scholar 

  170. Escobedo, J. O., Rusin, O., Lim, S., & Strongin, R. M. (2010). NIR dyes for bioimaging applications. Current Opinion in Chemical Biology, 14(1), 64–70.

    Article  Google Scholar 

  171. Kalchenko, V., Shivtiel, S., Malina, V., Lapid, K., Haramati, S., Lapidot, T., et al. (2006). Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. Journal of Biomedical Optics, 11(5), 050507.

    Article  Google Scholar 

  172. He, X., Bao, X., Cao, H., Zhang, Z., Yin, Q., Gu, W., et al. (2015). Tumor-Penetrating Nanotherapeutics Loading a Near-Infrared Probe Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 25(19), 2831–2839.

    Article  Google Scholar 

  173. Nogues, I. F. T., Goutayer, M., Da Silva, A., Guyon, L., Djaker, N., Josserand, V., et al. (2009). Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging. Journal of Biomedical Optics, 14(5), 054005.

    Article  Google Scholar 

  174. Cao, S., Pei, Z., Xu, Y., & Pei, Y. (2016). Glyco-nanovesicles with activatable near-infrared probes for real-time monitoring of drug release and targeted delivery. Chemistry of Materials, 28(12), 4501–4506.

    Article  Google Scholar 

  175. Lee, M. H., Yang, Z., Lim, C. W., Lee, Y. H., Dongbang, S., Kang, C., et al. (2013). Disulfide-cleavage-triggered chemosensors and their biological applications. Chemical Reviews, 113(7), 5071–5109.

    Article  Google Scholar 

  176. Perera, K., Nguyen, D. X., Wang, D., Kuriakose, A. E., Yang, J., Nguyen, K. T., et al. (2022). Biodegradable and Inherently Fluorescent pH-Responsive Nanoparticles for Cancer Drug Delivery. Pharmaceutical Research, 1-15.

  177. Al Tameemi, W., Dale, T. P., Al-Jumaily, R. M. K., & Forsyth, N. R. (2019). Hypoxia-modified cancer cell metabolism. Frontiers in Cell and Developmental Biology, 7, 4.

    Article  Google Scholar 

  178. Justus, C. R., Dong, L., & Yang, L. V. (2013). Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Frontiers in Physiology, 4, 354.

    Article  Google Scholar 

  179. Zhang, Q., Weber, C., Schubert, U. S., & Hoogenboom, R. (2017). Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Materials Horizons, 4(2), 109–116.

    Article  Google Scholar 

  180. Nagy-Simon, T., Diaconu, O., Focsan, M., Vulpoi, A., Botiz, I., & Craciun, A.-M. (2021). Pluronic stabilized conjugated polymer nanoparticles for NIR fluorescence imaging and dual phototherapy applications. Journal of Molecular Structure, 1243, 130931.

    Article  Google Scholar 

  181. Zhu, H., Fang, Y., Miao, Q., Qi, X., Ding, D., Chen, P., et al. (2017). Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano, 11(9), 8998–9009.

    Article  Google Scholar 

  182. Rohatgi, C. V., Harada, T., Need, E. F., Krasowska, M., Beattie, D. A., Dickenson, G. D., et al. (2018). Low-bandgap conjugated polymer dots for near-infrared fluorescence imaging. ACS Applied Nano Materials, 1(9), 4801–4808.

    Article  Google Scholar 

  183. Seo, D., Park, J., Shin, T. J., Yoo, P. J., Park, J., & Kwak, K. (2015). Bathochromic shift in absorption spectra of conjugated polymer nanoparticles with displacement along backbones. Macromolecular Research, 23(6), 574–577.

    Article  Google Scholar 

  184. Botiz, I., Freyberg, P., Leordean, C., Gabudean, A.-M., Astilean, S., Yang, A. C.-M., et al. (2015). Emission properties of MEH-PPV in thin films simultaneously illuminated and annealed at different temperatures. Synthetic Metals, 199, 33–36.

    Article  Google Scholar 

  185. Botiz, I., Codescu, M.-A., Farcau, C., Leordean, C., Astilean, S., Silva, C., et al. (2017). Convective self-assembly of π-conjugated oligomers and polymers. Journal of Materials Chemistry C, 5(10), 2513–2518.

    Article  Google Scholar 

  186. Cai, H., Wang, X., Zhang, H., Sun, L., Pan, D., Gong, Q., et al. (2018). Enzyme-sensitive biodegradable and multifunctional polymeric conjugate as theranostic nanomedicine. Applied Materials Today, 11, 207–218.

    Article  Google Scholar 

  187. Lock, L. L., Cheetham, A. G., Zhang, P., & Cui, H. (2013). Design and construction of supramolecular nanobeacons for enzyme detection. ACS Nano, 7(6), 4924–4932.

    Article  Google Scholar 

  188. Schneider, G. F., Subr, V., Ulbrich, K., & Decher, G. (2009). Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy. Nano Letters, 9(2), 636–642.

    Article  Google Scholar 

  189. Luo, K., Yang, J., Kopečková, P., & Ji, K. (2011). Biodegradable multiblock poly [N-(2-hydroxypropyl) methacrylamide] via reversible addition− fragmentation chain transfer polymerization and click chemistry. Macromolecules, 44(8), 2481–2488.

    Article  Google Scholar 

  190. Key, J., Aryal, S., Gentile, F., Ananta, J. S., Zhong, M., Landis, M. D., et al. (2013). Engineering discoidal polymeric nanoconstructs with enhanced magneto-optical properties for tumor imaging. Biomaterials, 34(21), 5402–5410.

    Article  Google Scholar 

  191. Kolouchova, K., Groborz, O., Cernochova, Z., Skarkova, A., Brabek, J., Rosel, D., et al. (2021). Thermo-and ROS-responsive self-assembled polymer nanoparticle tracers for 19F MRI theranostics. Biomacromolecules, 22(6), 2325–2337.

    Article  Google Scholar 

  192. Sarkar, S., Graham-Gurysh, E. G., MacNeill, C. M., Kelkar, S., McCarthy, B. D., Mohs, A., et al. (2020). Variable molecular weight nanoparticles for near-infrared fluorescence imaging and photothermal ablation. ACS Applied Polymer Materials, 2(10), 4162–4170.

    Article  Google Scholar 

  193. Min, H. S., You, D. G., Son, S., Jeon, S., Park, J. H., Lee, S., et al. (2015). Echogenic glycol chitosan nanoparticles for ultrasound-triggered cancer theranostics. Theranostics, 5(12), 1402.

    Article  Google Scholar 

  194. Cao, Z., Feng, L., Zhang, G., Wang, J., Shen, S., Li, D., et al. (2018). Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging. Biomaterials, 155, 103–111.

    Article  Google Scholar 

  195. Goos, J. A., Cho, A., Carter, L. M., Dilling, T. R., Davydova, M., Mandleywala, K., et al. (2020). Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect. Theranostics, 10(2), 567.

    Article  Google Scholar 

  196. Ho, L.-C., Hsu, C.-H., Ou, C.-M., Wang, C.-W., Liu, T.-P., Hwang, L.-P., et al. (2015). Unibody core–shell smart polymer as a theranostic nanoparticle for drug delivery and MR imaging. Biomaterials, 37, 436–446.

    Article  Google Scholar 

  197. Lee, J., Min, H.-S., You, D. G., Kim, K., Kwon, I. C., Rhim, T., et al. (2016). Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma. Journal of Controlled Release, 223, 197–206.

    Article  Google Scholar 

  198. Kumar, P., Wu, H., McBride, J. L., Jung, K.-E., Hee Kim, M., Davidson, B. L., et al. (2007). Transvascular delivery of small interfering RNA to the central nervous system. Nature, 448(7149), 39–43.

    Article  Google Scholar 

  199. Son, S., Jang, J., Youn, H., Lee, S., Lee, D., Lee, Y.-S., et al. (2011). A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials, 32(21), 4968–4975.

    Article  Google Scholar 

  200. Chung, M. F., Chen, K. J., Liang, H. F., Liao, Z. X., Chia, W. T., Xia, Y., et al. (2012). A liposomal system capable of generating CO2 bubbles to induce transient cavitation, lysosomal rupturing, and cell necrosis. Angewandte Chemie International Edition, 51(40), 10089–10093.

    Article  Google Scholar 

  201. McCarthy B, Cudykier A, Singh R, Levi-Polyachenko N, Soker S. (2021). Semiconducting polymer nanoparticles for photothermal ablation of colorectal cancer organoids. Scientific Reports 11(1), 1-12.

  202. Wielenga, V. J., Heider, K.-H., Johan, G., Offerhaus, A., Adolf, G. R., van den Berg, F. M., et al. (1993). Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Research, 53(20), 4754–4756.

    Google Scholar 

  203. Shao, J., Liang, R., Ding, D., Zheng, X., Zhu, X., Hu, S., et al. (2021). A Smart multifunctional nanoparticle for enhanced near-infrared image-guided photothermal therapy against gastric cancer. International Journal of Nanomedicine, 16, 2897.

    Article  Google Scholar 

  204. Yang, Z., Cheng, R., Zhao, C., Sun, N., Luo, H., Chen, Y., et al. (2018). Thermo-and pH-dual responsive polymeric micelles with upper critical solution temperature behavior for photoacoustic imaging-guided synergistic chemo-photothermal therapy against subcutaneous and metastatic breast tumors. Theranostics, 8(15), 4097.

    Article  Google Scholar 

  205. Yan, L., & Qiu, L. (2015). Indocyanine green targeted micelles with improved stability for near-infrared image-guided photothermal tumor therapy. Nanomedicine, 10(3), 361–373.

    Article  Google Scholar 

  206. Böger, C., Warneke, V. S., Behrens, H.-M., Kalthoff, H., Goodman, S. L., Becker, T., et al. (2015). Integrins αvβ3 and αvβ5 as prognostic, diagnostic, and therapeutic targets in gastric cancer. Gastric Cancer, 18(4), 784–795.

    Article  Google Scholar 

  207. Lisanti, M. P., Martinez-Outschoorn, U. E., Lin, Z., Pavlides, S., Whitaker-Menezes, D., Pestell, R. G., et al. (2011). Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs" fertilizer". Cell Cycle, 10(15), 2440–2449.

    Article  Google Scholar 

  208. Pellosi, D. S., Calori, I. R., de Paula, L. B., Hioka, N., Quaglia, F., & Tedesco, A. C. (2017). Multifunctional theranostic Pluronic mixed micelles improve targeted photoactivity of Verteporfin in cancer cells. Materials Science and Engineering: C, 71, 1–9.

    Article  Google Scholar 

  209. Ren, W. X., Han, J., Uhm, S., Jang, Y. J., Kang, C., Kim, J.-H., et al. (2015). Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chemical Communications, 51(52), 10403–10418.

    Article  Google Scholar 

  210. Vadlapudi, A. D., Vadlapatla, R. K., Pal, D., & Mitra, A. K. (2013). Biotin uptake by T47D breast cancer cells: functional and molecular evidence of sodium-dependent multivitamin transporter (SMVT). International Journal of Pharmaceutics, 441(1-2), 535–543.

    Article  Google Scholar 

  211. Li, J., Cai, P., Shalviri, A., Henderson, J. T., He, C., Foltz, W. D., et al. (2014). A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood–brain barrier targeting brain metastases of breast cancer. ACS Nano, 8(10), 9925–9940.

    Article  Google Scholar 

  212. Kreuter, J. (2013). Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). Journal of Microencapsulation, 30(1), 49–54.

    Article  MathSciNet  Google Scholar 

  213. Kreuter, J., Hekmatara, T., Dreis, S., Vogel, T., Gelperina, S., & Langer, K. (2007). Covalent attachment of apolipoprotein AI and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. Journal of Controlled Release, 118(1), 54–58.

    Article  Google Scholar 

  214. Cong, Z., Zhang, L., Ma, S.-Q., Lam, K. S., Yang, F.-F., & Liao, Y.-H. (2020). Size-transformable hyaluronan stacked self-assembling peptide nanoparticles for improved transcellular tumor penetration and photo–chemo combination therapy. ACS Nano, 14(2), 1958–1970.

    Article  Google Scholar 

  215. Son, J., Yang, S. M., Yi, G., Roh, Y. J., Park, H., Park, J. M., et al. (2018). Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo. Biochemical and Biophysical Research Communications, 498(3), 523–528.

    Article  Google Scholar 

  216. Yang, Y., Zhang, Y.-M., Li, D., Sun, H.-L., Fan, H.-X., & Liu, Y. (2016). Camptothecin–polysaccharide co-assembly and its controlled release. Bioconjugate Chemistry, 27(12), 2834–2838.

    Article  Google Scholar 

  217. Liu, Y., Feng, L., Liu, T., Zhang, L., Yao, Y., Yu, D., et al. (2014). Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale, 6(6), 3231–3242.

    Article  Google Scholar 

  218. Xiao, Y., Hong, H., Javadi, A., Engle, J. W., Xu, W., Yang, Y., et al. (2012). Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials, 33(11), 3071–3082.

    Article  Google Scholar 

  219. Santra, S., & Perez, J. M. (2011). Selective N-alkylation of β-alanine facilitates the synthesis of a poly (amino acid)-based theranostic nanoagent. Biomacromolecules, 12(11), 3917–3927.

    Article  Google Scholar 

  220. Hua, S., De Matos, M. B., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in Pharmacology, 9, 790.

    Article  Google Scholar 

  221. Luque-Michel, E., Imbuluzqueta, E., Sebastián, V., & Blanco-Prieto, M. J. (2017). Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opinion on Drug Delivery, 14(1), 75–92.

    Article  Google Scholar 

  222. Kim, T.-Y., Kim, D.-W., Chung, J.-Y., Shin, S. G., Kim, S.-C., Heo, D. S., et al. (2004). Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research, 10(11), 3708–3716.

    Article  Google Scholar 

  223. Lee, K. S., Chung, H. C., Im, S. A., Park, Y. H., Kim, C. S., Kim, S.-B., et al. (2008). Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Research and Treatment, 108, 241–250.

    Article  Google Scholar 

  224. Podoltsev, N., Rubin, M., Figueroa, J., Lee, M., Kwon, J., Yu, J., et al. (2008). Phase II clinical trial of paclitaxel loaded polymeric micelle (GPM) in patients (pts) with advanced pancreatic cancer (APC): Final results. Journal of Clinical Oncology, 26(15_suppl), 4627.

    Article  Google Scholar 

  225. Kim, D.-W., Kim, S.-Y., Kim, H.-K., Kim, S.-W., Shin, S., Kim, J., et al. (2007). Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Annals of Oncology, 18(12), 2009–2014.

    Article  Google Scholar 

  226. Kim, C., Bae, S., Lee, N., Lee, K., Park, S., Kim, D., et al. (2006). Phase II study of Genexol (paclitaxel) and carboplatin as first-line treatment of advanced or metastatic non-small-cell lung cancer (NSCLC). Journal of Clinical Oncology, 24(18_suppl), 17049.

    Article  Google Scholar 

  227. Matsumura, Y. (2008). Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Advanced Drug Delivery Reviews., 60(8), 899–914.

    Article  Google Scholar 

  228. Matsumura, Y. (2008). Polymeric micellar delivery systems in oncology. Japanese Journal of Clinical Oncology, 38(12), 793–802.

    Article  Google Scholar 

  229. Burris, H., III, Infante, J., Spigel, D., Greco, F., Thompson, D., Matsumoto, S., et al. (2008). A phase I dose-escalation study of NK012. Journal of Clinical Oncology, 26(15_suppl), 2538.

    Article  Google Scholar 

  230. Kato, K. (2008). PhaseI study of NK012, polymer micelle SN-38, in patients with advanced cancer. Proc Ams Soc Clin Oncol GI.

  231. Matsumura, Y., & Kataoka, K. (2009). Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Science, 100(4), 572–579.

    Article  Google Scholar 

  232. Caster, J. M., Patel, A. N., Zhang, T., & Wang, A. (2017). Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(1), e1416.

    Google Scholar 

  233. Danson, S., Ferry, D., Alakhov, V., Margison, J., Kerr, D., Jowle, D., et al. (2004). Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. British Journal of Cancer, 90(11), 2085–2091.

    Article  Google Scholar 

  234. Armstrong, A., Brewer, J., Newman, C., Alakhov, V., Pietrzynski, G., Campbell, S., et al. (2006). SP1049C as first-line therapy in advanced (inoperable or metastatic) adenocarcinoma of the oesophagus: a phase II window study. Journal of Clinical Oncology, 24(18_suppl), 4080.

    Article  Google Scholar 

  235. Valle, J., Lawrance, J., Brewer, J., Clayton, A., Corrie, P., Alakhov, V., et al. (2004). A phase II, window study of SP1049C as first-line therapy in inoperable metastatic adenocarcinoma of the oesophagus. Journal of Clinical Oncology, 22(14_suppl), 4195.

    Article  Google Scholar 

  236. Ventola, C. L. (2017). Progress in nanomedicine: approved and investigational nanodrugs. Pharmacy and Therapeutics, 42(12), 742.

    Google Scholar 

  237. Weiss, G. J., Chao, J., Neidhart, J. D., Ramanathan, R. K., Bassett, D., Neidhart, J. A., et al. (2013). First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Investigational New Drugs, 31, 986–1000.

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

Donald Fernandes contributed and was involved in all aspects of the work.

Ethics declarations

Ethical Approval

Not applicable

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, D.A. Theranostic Polymeric Nanoparticles for Cancer. BioNanoSci. 13, 1609–1644 (2023). https://doi.org/10.1007/s12668-023-01151-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01151-9

Keywords

Navigation