Skip to main content

Advertisement

Log in

Antibiotic Resistance of Biofilm-Related Catheter-Associated Urinary Tract Isolates of Pseudomonas aeruginosa

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Catheter-associated urinary tract infections (CAUTI) are one of the most common nosocomial diseases accounting for up to about 23% of healthcare-associated infections. High antibiotic resistance of biofilm-associated bacteria is a serious limiting factor in the treatment of patients. Therefore, the investigations of bacterial biofilms and their regulation can play a pivotal role in the development of new approaches to treating infections. P. aeruginosa is a key bacterium responsible for most urinary tract infections. In this study, urinary catheter–associated P. aeruginosa strains were isolated and their antibiotic resistance was studied. Polymicrobial biofilms were found on the urinary catheter surfaces derived from patients with different urinary tract diseases. Three strains of Pseudomonas aeruginosa isolated from the catheter-associated biofilms were resistant to meropenem. The resistance to carbapenemss of P. aeruginosa strains 96,347 and 96,349 was observed to be mediated by VIM-type metallo-β-lactamase gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not available.

References

  1. Parker, V., Giles, M., Graham, L., Suthers, B., Watts, W., O’Brien, T., & Searles, A. (2017). Avoiding inappropriate urinary catheter use and catheter-associated urinary tract infection (CAUTI): A pre-post control intervention study. BMC Health Services Research, 17, 314.

    Article  Google Scholar 

  2. Domenech, M., Ramos-Sevillano, E., García, E., Moscoso, M., & Yuste, J. (2013). Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infection and Immunity, 81(7), 2606–2615.

    Article  Google Scholar 

  3. Singha, L. P., Kotoky, R., & Pandey, P. (2017). Draft genome sequence of Pseudomonas fragi Strain DBC, which has the ability to degrade high-molecular-weight polyaromatic hydrocarbons. Genome Announcements, 5(49), e01347-e1417.

    Article  Google Scholar 

  4. Williamson, W., Fuld, J., Westgate, K., Sylvester, K., Ekelund, U., & Brage, S. (2012). Validity of reporting oxygen uptake efficiency slope from submaximal exercise using respiratory exchange ratio as secondary criterion. Pulmonary Medicine, 2012, 874020.

    Article  Google Scholar 

  5. Sommer, L. M., Johansen, H. K., & Molin, S. (2020). Antibiotic resistance in Pseudomonas aeruginosa and adaptation to complex dynamic environments. Microbial Genomics, 2020, 6. https://doi.org/10.1099/mgen.0.000370

    Article  Google Scholar 

  6. Madaha, E. L., Mienie, C., Gonsu, H. K., Bughe, R. N., Fonkoua, M. C., Mbacham, W. F., Alayande, K. A., Bezuidenhout, C. C., & Ateba, C. N. (2020). Whole-genome sequence of multi-drug resistant Pseudomonas aeruginosa strains UY1PSABAL and UY1PSABAL2 isolated from human broncho-alveolar lavage, Yaounde´, Cameroon. PLoS ONE, 15(9), e0238390. https://doi.org/10.1371/journal.pone.0238390

    Article  Google Scholar 

  7. Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology and Infectious Diseases, 34, 877–886.

    Article  Google Scholar 

  8. Tolker-Nielsen, T. (2014). Pseudomonas aeruginosa biofilm infections: From molecular biofilm biology to new treatment possibilities. APMIS Supplementum, 138, 1–51. https://doi.org/10.1111/apm.12335

    Article  Google Scholar 

  9. Tolker-Nielsen, T. (2015). Biofilm development. ASM. Microbiol Spectrum, 3(2), 3.2.21, MB-0001–2014. https://doi.org/10.1128/microbiolspec.MB-0001-2014.

  10. Brooun, A., Liu, S., & Lewis, K. (2000). A dose-response study of antibiotic resistance in Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 44(3), 640–646.

    Article  Google Scholar 

  11. Ciofu, O., & Tolker-Nielsen, T. (2019). Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Frontiers in Microbiology, 10, 913. https://doi.org/10.3389/fmicb.2019.00913

    Article  Google Scholar 

  12. Hengzhuang, W., Ciofu, O., Yang, L., Wu, H., Song, Z., Oliver, A., & Høiby, N. (2013). High β-lactamase levels change the pharmacodynamics of β-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 57(1), 196–204.

    Article  Google Scholar 

  13. Gallant, C. V., Daniels, C., Leung, J. M., Ghosh, A. S., Young, K. D., Kotra, L. P., & Burrows, L. L. (2005). Common β-lactamases inhibit bacterial biofilm formation. Molecular Microbiology, 58(4), 1012–1024. https://doi.org/10.1111/j.1365-2958.2005.04892.x

    Article  Google Scholar 

  14. Wu, F., Chen, L., Wang, J., & Alhajj, R. (2014). Biomolecular networks and human diseases. BioMed Research International, 2014, 363717.

    Google Scholar 

  15. Bizzini, A., & Greub, G. (2010). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clinical Microbiology & Infection, 16, 1614–1619.

    Article  Google Scholar 

  16. Lau, S. K. P., Lam, C. S. K., Ngan, A. H. Y., Chow, W.-N., Wu, A. K. L., & Tsang, D. N. C. (2016). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid identification of mold and yeast cultures of Penicillium marneffei. BMC Microbiology, 16, 36. https://doi.org/10.1186/s12866-016-0656-0

    Article  Google Scholar 

  17. Merritt, J. H., Kadouri, D. E., & O’Toole, G. A. (2005). Growing and analyzing static biofilms. Current Protocols in Microbiology, 01, Unit-1B .1. https://doi.org/10.1002/9780471729259.mc01b01s00

    Article  Google Scholar 

  18. Stepanovic, S., Vukovic, D., Hola, V., Di Bonaventura, G., Djukic, S., C´Irkovic, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115, 891–899.

    Article  Google Scholar 

  19. Van Laar, T. A., Chen, T., You, T., & Leung, K. P. (2015). Sublethal concentrations of carbapenems alter cell morphology and genomic expression of Klebsiella pneumoniae biofilms. Antimicrobial Agents and Chemotherapy, 59, 1707–1717.

    Article  Google Scholar 

  20. Cui, M.-J., Teng, A., Chu, J., & Cao, B. (2022). A quantitative, high throughput urease activity assay for comparison and rapid screening of ureolytic bacteria. Environmental Research, 208, 112738.

    Article  Google Scholar 

  21. van Gennip, M., Christensen, L. D., Alhede, M., Qvortrup, K., Jensen, P. Ø., Høib, N., Givskov, M., & Bjarnsholt, T. (2012). Interactions between polymorphonuclear leukocytes and Pseudomonas aeruginosa biofilms on silicone implants in vivo. Infection and Immunity, 80(8), 2601–2607.

    Article  Google Scholar 

  22. Donlan, R. M. (2002). Biofilm: Microbial life on surface. Emerging Infectious Diseases, 8, 881–890.

    Article  Google Scholar 

  23. Chauhan, V., Howland, M., & Wilkins, R. (2012). A comparitive assessement of cytokine expression in human-derived cell lines exposed to alpha particles and X-rays. The Scientific World Journal, 2012, 609295.

    Article  Google Scholar 

  24. Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), 269–284. https://doi.org/10.1038/nrmicro3432

    Article  Google Scholar 

  25. Abbas, H. A., El-Ganiny, A. M., & Kamel, H. A. (2018). Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. African Health Sciences, 18(1), 11–21.

    Article  Google Scholar 

  26. Bono, M. J., Leslie, S. W., Reygaert, W. C. (2022). Urinary tract infection. [Updated November 28, 2022.]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK470195/

  27. Glen, K. A., & Lamont, I. L. (2021). β-lactam resistance in Pseudomonas aeruginosa: Current status, futureprospects. Pathogens, 10, 1638. https://doi.org/10.3390/pathogens10121638

    Article  Google Scholar 

  28. Shevchenko, O. V., Mudrak, D. Y., Skleenova, E. Y., Kozyreva, V. K., Ilina, E. N., Ikryannikova, L. N., Alexandrova, I. A., Sidorenko, S. V., & Edelstein, M. V. (2007). First detection of VIM-4 metallob-lactamase-producing Escherichia coli in Russia. Clinical Microbiology & Infection, 18, 214–217.

    Article  Google Scholar 

  29. Halat, D. H., & Moubareck, C. A. (2022). The current burden of carbapenemases: Review of SIGNIfiCANT PROPERTIES AND DISSEMINATION AMONG GRAM-NEGATIVE BACTERIA. Antibiotics, 9, 186. https://doi.org/10.3390/antibiotics9040186

    Article  Google Scholar 

  30. Queenan, A. M., & Bush, K. (2007). Carbapenemases: The Versatile -Lactamases. Clinical Microbiology Reviews, 20(3), 440–458.

    Article  Google Scholar 

Download references

Acknowledgements

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030). The authors would like to thank the Laboratory of Clinical Bacteriology at the Republican Clinical Hospital of the Republic of Tatarstan for the support in the work with clinical samples.

Funding

This work was funded by the Russian Foundation for Basic Research (research project no.20–315-90093).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to the current work. L.V. and M.S. designed the experiments. N.K., L.V., E.S., D.K., and V.V. performed the experiments. L.V., N.K., Z.G., and M.S. analyzed data. Z.G. provided the clinical material (catheters). L.V. and N.K. wrote the paper with contributions from all other authors. Correspondence and requests for materials should be addressed to L.V. or M.S. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Lia Valeeva or Margarita Sharipova.

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

The materials used in this study do not contain personal data of patients. Informed consent was obtained from all the patients recruited in this study. Clinical samples were provided in accordance with the university ethical regulations.

Conflict of Interest

All authors’ individual rights were respected and information regarding data, pictures and the overall draft was made with their concern.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabipova, N., Valeeva, L., Shaidullina, E. et al. Antibiotic Resistance of Biofilm-Related Catheter-Associated Urinary Tract Isolates of Pseudomonas aeruginosa. BioNanoSci. 13, 1012–1021 (2023). https://doi.org/10.1007/s12668-023-01123-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01123-z

Keywords

Navigation