Skip to main content

Advertisement

Log in

A Comparative Study of Green and Chemical Cerium Oxide Nanoparticles (CeO2-NPs): From Synthesis, Characterization, and Electrochemical Analysis to Multifaceted Biomedical Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The underline study focuses on the comparative physicochemical and morphological characteristics, electrochemical analysis, and biological properties of green and chemically synthesized cerium oxide nanoparticles. Green synthesis (G-CeO2-NPs) was carried out using an aqueous root extract of Polygonum bistorta Linn as a reducing and capping agent while chemical synthesis (C-CeO2-NPs) was achieved using ammonium hydroxide (NH4OH) solution via facile precipitation approach. The prepared nanoparticles were investigated for physicochemical, morphological, elemental, and electrochemical properties using multiple characterization techniques while the comparative yield was also determined. Chemical synthesis resulted in cerium oxide nanoparticles (C-CeO2-NPs) with higher yield and specific capacitance compared to green synthesis. However, green synthesized cerium oxide nanoparticles (G-CeO2-NPs) were biologically more active. For instance, G-CeO2-NPs exhibited better antioxidant and bactericidal properties as well as superior leishmanicidal properties, against the amastigote and promastigote stages of the Leishmania tropica, the dimorphic parasite that causes Leishmaniasis. The NPs also demonstrated moderate but comparable anti-Alzheimer’s and antidiabetic properties in in vitro studies. Finally, both the chemical and green synthesized CeO2-NPs proved significant hemocompatibility, making cerium oxide nanoparticles, mainly the G-CeO2-NPs, biologically more active, nontoxic, eco-friendly, and favorable candidates for diverse pharmacological studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in the article and or are available with the corresponding author on request.

References

  1. Dale, J. G., Cox, S. S., Vance, M. E., Marr, L. C., & Hochella, M. F., Jr. (2017). Transformation of cerium oxide nanoparticles from a diesel fuel additive during combustion in a diesel engine. Environmental Science & Technology, 51(4), 1973–1980.

    Google Scholar 

  2. Dhall, A., & Self, W. (2018). Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants, 7(8), 97.

    Google Scholar 

  3. Harb, S. V., Trentin, A., de Souza, T. A. C., Magnani, M., Pulcinelli, S. H., Santilli, C. V., & Hammer, P. (2020). Effective corrosion protection by eco-friendly self-healing PMMA-cerium oxide coatings. Chemical Engineering Journal, 383, 123219.

    Google Scholar 

  4. Janoš, P., Henych, J., Pelant, O., Pilařová, V., Vrtoch, L., Kormunda, M., ... & Štengl, V. (2016). Cerium oxide for the destruction of chemical warfare agents: a comparison of synthetic routes. Journal of Hazardous Materials, 304, 259–268

  5. Javadi, F., Yazdi, M. E. T., Baghani, M., & Es-haghi, A. (2019). Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Materials Research Express, 6(6), 065408.

    Google Scholar 

  6. Nanda, H. S. (2016). Surface modification of promising cerium oxide nanoparticles for nanomedicine applications. RSC Advances, 6(113), 111889–111894.

    Google Scholar 

  7. Nourmohammadi, E., Khoshdel-Sarkarizi, H., Nedaeinia, R., Sadeghnia, H. R., Hasanzadeh, L., & DarroudiKazemi oskuee, M. R. (2019). Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. Journal of Cellular Physiology, 234(4), 4987–4996.

    Google Scholar 

  8. Nyoka, M., Choonara, Y. E., Kumar, P., Kondiah, P. P., & Pillay, V. (2020). Synthesis of cerium oxide nanoparticles using various methods: Implications for biomedical applications. Nanomaterials, 10(2), 242.

    Google Scholar 

  9. Scirè, S., & Palmisano, L. (2020). Cerium and cerium oxide: a brief introduction. Cerium Oxide (CeO2): Synthesis, Properties and Applications (pp. 1–12). Elsevier.

    Google Scholar 

  10. Thakur, N., Manna, P., & Das, J. (2019). Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. Journal of Nanobiotechnology, 17(1), 1–27.

    Google Scholar 

  11. Tsai, Y. Y., Oca-Cossio, J., Agering, K., Simpson, N. E., Atkinson, M. A., Wasserfall, C. H., & Sigmund, W. (2007). Novel synthesis of cerium oxide nanoparticles for free radical scavenging. Nanomedicine, 2, 325.

    Google Scholar 

  12. Xu, C., & Qu, X. (2014). Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials, 6(3), e90–e90.

    Google Scholar 

  13. Zhang, M., Zhang, C., Zhai, X., Luo, F., Du, Y., & Yan, C. (2019). Antibacterial mechanism and activity of cerium oxide nanoparticles. Science China Materials, 62(11), 1727–1739.

    Google Scholar 

  14. Thovhogi, N., Diallo, A., Gurib-Fakim, A., & Maaza, M. (2015). Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: Main physical properties. Journal of Alloys and Compounds, 647, 392–396.

    Google Scholar 

  15. Charbgoo, F., Ahmad, M. B., & Darroudi, M. (2017). Cerium oxide nanoparticles: Green synthesis and biological applications. International Journal of Nanomedicine, 12, 1401.

    Google Scholar 

  16. Jan, H., Khan, M. A., Usman, H., Shah, M., Ansir, R., Faisal, S., ... & Rahman, L. (2020). The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. RSC Advances, 10(33), 19219–19231.

  17. Pansambal, S., Oza, R., Borgave, S., Chauhan, A., Bardapurkar, P., Vyas, S., & Ghotekar, S. (2022). Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review. Applied Nanoscience 1–26.

  18. Cuong, H. N., Pansambal, S., Ghotekar, S., Oza, R., Hai, N. T. T., Viet, N. M., & Nguyen, V. H. (2022). New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research, 203, 111858.

    Google Scholar 

  19. Ghotekar, S., Pansambal, S., Bilal, M., Pingale, S. S., & Oza, R. (2021). Environmentally friendly synthesis of Cr2O3 nanoparticles: Characterization, applications and future perspective─ a review. Case Studies in Chemical and Environmental Engineering, 3, 100089.

    Google Scholar 

  20. Ghotekar, S., Pagar, K., Pansambal, S., Murthy, H. A., & Oza, R. (2021). Biosynthesis of silver sulfide nanoparticle and its applications. Handbook of greener synthesis of nanomaterials and compounds (pp. 191–200). Elsevier.

    Google Scholar 

  21. Barwant, M., Ugale, Y., Ghotekar, S., Basnet, P., Nguyen, V. H., Pansambal, S., ... & Karande, V. (2022). Eco-friendly synthesis and characterizations of Ag/AgO/Ag2O nanoparticles using leaf extracts of Solanum elaeagnifolium for antioxidant, anticancer, and DNA cleavage activities. Chemical Papers, 76(7), 4309–4321

  22. Marzban, A., Mirzaei, S. Z., Karkhane, M., Ghotekar, S. K., & Danesh, A. (2022). Biogenesis of copper nanoparticles assisted with seaweed polysaccharide with antibacterial and antibiofilm properties against methicillin-resistant Staphylococcus aureus. Journal of Drug Delivery Science and Technology, 74, 103499.

    Google Scholar 

  23. Vijayaraghavan, K., & Ashokkumar, T. (2017). Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. Journal of Environmental Chemical Engineering, 5(5), 4866–4883.

    Google Scholar 

  24. Kumar, M. D., Deepmala, J., & Sangeeta, S. (2012). Antioxidant, antipyretic and choleretic activities of crude extract and active compound of Polygonum Bistorta (Linn.) in albino rats. International Journal of Pharma and Bio Sciences, 2, 25–31.

    Google Scholar 

  25. Intisar, A., Zhang, L., Luo, H., Zhang, R., Wu, Z., & Zhang, W. (2012). Difference in essential oil composition of rhizome of Polygonum bistorta L. from different Asian regions and evaluation of its antibacterial activity. Journal of Essential Oil Bearing Plants, 15(6), 964–971.

    Google Scholar 

  26. Intisar, A., Zhang, L., Luo, H., Kiazolu, J. B., Zhang, R., & Zhang, W. (2013). Anticancer constituents and cytotoxic activity of methanol-water extract of Polygonum bistorta L. African Journal of Traditional, Complementary and Alternative Medicines, 10(1), 53–59.

    Google Scholar 

  27. Liu, Y. H., Weng, Y. P., Lin, H. Y., Tang, S. W., Chen, C. J., Liang, C. J., ... & Lin, J. Y. (2017). Aqueous extract of Polygonum bistorta modulates proteostasis by ROS-induced ER stress in human hepatoma cells. Scientific Reports, 7(1), 1–14

  28. Ingham, B., & Toney, M. F. (2014). X-ray diffraction for characterizing metallic films. Metallic Films for Electronic, Optical and Magnetic Applications (pp. 3–38). Woodhead Publishing.

    Google Scholar 

  29. Aziz, H., Saeed, A., Khan, M. A., Afridi, S., Jabeen, F., & Hashim, M. (2020). Novel N-acyl-1H-imidazole-1-carbothioamides: Design, synthesis, biological and computational studies. Chemistry & Biodiversity, 17(3), e1900509.

    Google Scholar 

  30. Aziz, H., Saeed, A., Khan, M. A., Afridi, S., & Jabeen, F. (2021). Synthesis, characterization, antimicrobial, antioxidant and computational evaluation of N-acyl-morpholine-4-carbothioamides. Molecular Diversity, 25(2), 763–776.

    Google Scholar 

  31. Farooq, M., Ihsan, J., Mohamed, R. M., Khan, M. A., Rehman, T. U., Ullah, H., ... & Siddiq, M. (2022). Highly biocompatible formulations based on Arabic gum nano composite hydrogels: fabrication, characterization, and biological investigation. International Journal of Biological Macromolecules, 209, 59–69

  32. Muhammad, W., Khan, M. A., Nazir, M., Siddiquah, A., Mushtaq, S., Hashmi, S. S., & Abbasi, B. H. (2019). Papaver somniferum L. mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: In-vitro biological applications, biocompatibility and their potential towards HepG2 cell line. Materials Science and Engineering: C, 103, 109740.

    Google Scholar 

  33. Valgas, C., Souza, S. M. D., Smânia, E. F., & Smânia, A., Jr. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38, 369–380.

    Google Scholar 

  34. Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., Khamlich, S., & Maaza, M. (2017). Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine, 12(15), 1767–1789.

    Google Scholar 

  35. Ihsan, J., Farooq, M., Khan, M. A., Ghani, M., Shah, L. A., Saeed, S., & Siddiq, M. (2021). Synthesis, characterization, and biological screening of metal nanoparticles loaded gum acacia microgels. Microscopy Research and Technique, 84(8), 1673–1684.

    Google Scholar 

  36. Faisal, S., Khan, M. A., Jan, H., Shah, S. A., Shah, S., Rizwan, M., & Akbar, M. T. (2020). Edible mushroom (Flammulina velutipes) as biosource for silver nanoparticles: From synthesis to diverse biomedical and environmental applications. Nanotechnology, 32(6), 065101.

    Google Scholar 

  37. Khalil, A. T., Ayaz, M., Ovais, M., Wadood, A., Ali, M., Shinwari, Z. K., & Maaza, M. (2018). In vitro cholinesterase enzymes inhibitory potential and in silico molecular docking studies of biogenic metal oxides nanoparticles. Inorganic and Nano-Metal Chemistry, 48(9), 441–448.

    Google Scholar 

  38. Khan, M. A., Ali, F., Faisal, S., Rizwan, M., Hussain, Z., Zaman, N., ... & Bibi, N. (2021). Exploring the therapeutic potential of Hibiscus rosa sinensis synthesized cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi Journal of Biological Sciences, 28(9), 5157–5167

  39. Chen, H. I., & Chang, H. Y. (2004). Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 242(1–3), 61–69.

    Google Scholar 

  40. Chen, H. I., & Chang, H. Y. (2005). Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceramics International, 31(6), 795–802.

    Google Scholar 

  41. Demiray, S., Pintado, M. E., & Castro, P. M. L. (2009). Evaluation of phenolic profiles and antioxidant activities of Turkish medicinal plants: Tiliaargentea, Crataegi folium leaves and Polygonum bistorta roots. International Journal of Pharmacological and Pharmaceutical Sciences, 3(6), 74–79.

    Google Scholar 

  42. Ovais, M., Raza, A., Naz, S., Islam, N. U., Khalil, A. T., Ali, S., ... & Shinwari, Z. K. (2017). Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Applied Microbiology and Biotechnology, 101(9), 3551–3565

  43. Farahmandjou, M., Zarinkamar, M., & Firoozabadi, T. P. (2016). Synthesis of Cerium Oxide (CeO2) nanoparticles using simple CO-precipitation method. Revista Mexicana de Física, 62(5), 496–499.

    MathSciNet  Google Scholar 

  44. Patra, J. K., & Baek, K. H. (2015). Green nanobiotechnology: factors affecting synthesis and characterization techniques. Journal of Nanomaterials, 2014, 219–219.

    Google Scholar 

  45. Kargar, H., Ghasemi, F., & Darroudi, M. (2015). Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceramics International, 41(1), 1589–1594.

    Google Scholar 

  46. Calvache-Muñoz, J., Prado, F. A., & Rodríguez-Páez, J. E. (2017). Cerium oxide nanoparticles: Synthesis, characterization and tentative mechanism of particle formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 146–159.

    Google Scholar 

  47. Khatami, M., Sarani, M., Mosazadeh, F., Rajabalipour, M., Izadi, A., Abdollahpour-Alitappeh, M., ... & Borhani, F. (2019). Nickel-doped cerium oxide nanoparticles: green synthesis using stevia and protective effect against harmful ultraviolet rays. Molecules, 24(24), 4424

  48. Bandyopadhyay, S., Peralta-Videa, J. R., Plascencia-Villa, G., José-Yacamán, M., & Gardea-Torresdey, J. L. (2012). Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: Use of advanced microscopic and spectroscopic techniques. Journal of Hazardous Materials, 241, 379–386.

    Google Scholar 

  49. Ali, S. R., Kumar, R., Kadabinakatti, S. K., & Arya, M. C. (2018). Enhanced UV and visible light—driven photocatalytic degradation of tartrazine by nickel-doped cerium oxide nanoparticles. Materials Research Express, 6(2), 025513.

    Google Scholar 

  50. Maqbool, Q., Nazar, M., Naz, S., Hussain, T., Jabeen, N., Kausar, R., ... & Jan, T. (2016). Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. International Journal of Nanomedicine11, 5015

  51. Surendra, T. V., & Roopan, S. M. (2016). Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. Journal of Photochemistry and Photobiology B: Biology, 161, 122–128.

    Google Scholar 

  52. Jayakumar, G., Irudayaraj, A. A., & Raj, A. D. (2019). Investigation on the synthesis and photocatalytic activity of activated carbon–cerium oxide (AC–CeO2) nanocomposite. Applied Physics A, 125(11), 1–9.

    Google Scholar 

  53. Theivandran, G., Ibrahim, S. M., & Murugan, M. (2015). Fourier transform infrared (Ft-Ir) spectroscopic analysis of Spirulina fusiformis. Journal of Medicinal Plants Studies, 3(4), 30–32.

    Google Scholar 

  54. Joseph, E., & Singhvi, G. (2019). Multifunctional nanocrystals for cancer therapy: a potential nanocarrier. Nanomaterials for Drug Delivery and Therapy, 91–116.

  55. Shnoudeh, A. J., Hamad, I., Abdo, R. W., Qadumii, L., Jaber, A. Y., Surchi, H. S., & Alkelany, S. Z. (2019). Synthesis, characterization, and applications of metal nanoparticles. Biomaterials and bionanotechnology (pp. 527–612). Academic Press.

    Google Scholar 

  56. Shah, V., Shah, S., Shah, H., Rispoli, F. J., McDonnell, K. T., Workeneh, S., ... & Seal, S. (2012). Antibacterial activity of polymer coated cerium oxide nanoparticles. PLoS One7(10), e47827

  57. Srinivas, A., Rao, P. J., Selvam, G., Murthy, P. B., & Reddy, P. N. (2011). Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicology letters, 205(2), 105–115.

    Google Scholar 

  58. Ensafi, A. A., Ahmadi, N., & Rezaei, B. (2015). Electrochemical preparation and characterization of a polypyrrole/nickel-cobalt hexacyanoferrate nanocomposite for supercapacitor applications. RSC Advances, 5(111), 91448–91456.

    Google Scholar 

  59. Shah, M., Murtaza, I., Abid, R., Shuja, A., Meng, H., & Ahmed, N. (2021). Fluorene substituted thieno [3, 2-b] thiophene–a new electrochromic conjugated polymer. Journal of Polymer Research, 28(10), 1–8.

    Google Scholar 

  60. Naderi, H. R., Norouzi, P., & Ganjali, M. R. (2016). Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite. Applied Surface Science, 366, 552–560.

    Google Scholar 

  61. Neha, K., Haider, M. R., Pathak, A., & Yar, M. S. (2019). Medicinal prospects of antioxidants: A review. European Journal of Medicinal Chemistry, 178, 687–704.

    Google Scholar 

  62. Khan, M. M., Iqbal, M., Hanif, M. A., Mahmood, M. S., Naqvi, S. A., Shahid, M., & Jaskani, M. J. (2012). Antioxidant and antipathogenic activities of citrus peel oils. Journal of Essential Oil Bearing Plants, 15(6), 972–979.

    Google Scholar 

  63. Bhalodia, N. R., Nariya, P. B., Acharya, R. N., & Shukla, V. J. (2013). In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. Ayu, 34(2), 209.

    Google Scholar 

  64. Pyrzynska, K., & Pękal, A. (2013). Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Analytical Methods, 5(17), 4288–4295.

    Google Scholar 

  65. Ilyasov, I. R., Beloborodov, V. L., Selivanova, I. A., & Terekhov, R. P. (2020). ABTS/PP decolorization assay of antioxidant capacity reaction pathways. International Journal of Molecular Sciences, 21(3), 1131.

    Google Scholar 

  66. Konappa, N., Udayashankar, A. C., Dhamodaran, N., Krishnamurthy, S., Jagannath, S., Uzma, F., ... & Jogaiah, S. (2021). Ameliorated antibacterial and antioxidant properties by Trichoderma harzianum mediated green synthesis of silver nanoparticles. Biomolecules11(4), 535

  67. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.

    Google Scholar 

  68. Arumugam, A., Karthikeyan, C., Hameed, A. S. H., Gopinath, K., Gowri, S., & Karthika, V. (2015). Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Materials Science and Engineering: C, 49, 408–415.

    Google Scholar 

  69. Ahmed, H. E., Iqbal, Y., Aziz, M. H., Atif, M., Batool, Z., Hanif, A., ... & Ahmad, H. (2021). Green synthesis of CeO2 nanoparticles from the Abelmoschus esculentus extract: evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities. Molecules26(15), 4659

  70. Qi, M., Li, W., Zheng, X., Li, X., Sun, Y., Wang, Y., ... & Wang, L. (2020). Cerium and its oxidant-based nanomaterials for antibacterial applications: a state-of-the-art review. Frontiers in Materials7, 213

  71. Sargia, B., Shah, J., Singh, R., Arya, H., Shah, M., Karakoti, A. S., & Singh, S. (2017). Phosphate-dependent modulation of antibacterial strategy: A redox state-controlled toxicity of cerium oxide nanoparticles. Bulletin of Materials Science, 40(6), 1231–1240.

    Google Scholar 

  72. Gupta, A., Das, S., Neal, C. J., & Seal, S. (2016). Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. Journal of Materials Chemistry B, 4(19), 3195–3202.

    Google Scholar 

  73. Inceboz, T. (2019). Epidemiology and ecology of leishmaniasis, in current topics in neglected tropical diseases. Rijeka: IntechOpen.

  74. Akhoundi, M., Downing, T., Votýpka, J., Kuhls, K., Lukeš, J., Cannet, A., ... & Sereno, D. (2017). Leishmania infections: molecular targets and diagnosis. Molecular aspects of medicine57, 1–29

  75. Tanaka, J. C. A., Da Silva, C. C., Ferreira, I. C. P., Machado, G. M. C., Leon, L. L., & De Oliveira, A. J. B. (2007). Antileishmanial activity of indole alkaloids from Aspidosperma ramiflorum. Phytomedicine, 14(6), 377–380.

    Google Scholar 

  76. Mehta, A., & Shaha, C. (2006). Mechanism of metalloid-induced death in Leishmania spp.: role of iron, reactive oxygen species, Ca2+, and glutathione. Free Radical Biology and Medicine, 40(10), 1857–1868.

    Google Scholar 

  77. Fanti, J. R., Tomiotto-Pellissier, F., Miranda-Sapla, M. M., Cataneo, A. H. D., de Jesus Andrade, C. G. T., Panis, C., ... & Conchon-Costa, I. (2018). Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta tropica178, 46–54

  78. Mallick, S., Dey, S., Mandal, S., Dutta, A., Mukherjee, D., Biswas, G., ... & Pal, C. (2015). A novel triterpene from Astraeus hygrometricus induces reactive oxygen species leading to death in Leishmania donovani. Future microbiology10(5), 763–789

  79. Ahmad, A., Ullah, S., Syed, F., Tahir, K., Khan, A. U., & Yuan, Q. (2020). Biogenic metal nanoparticles as a potential class of antileishmanial agents: Mechanisms and molecular targets. Nanomedicine, 15(08), 809–828.

    Google Scholar 

  80. Nair, A., Jayakumari, C., Jabbar, P. K., Jayakumar, R. V., Raizada, N., Gopi, A., ... & Seena, T. P. (2018). Prevalence and associations of hypothyroidism in Indian patients with type 2 diabetes mellitus. Journal of Thyroid Research, 2018.

  81. Aynalem, S. B., & Zeleke, A. J. (2018). Prevalence of diabetes mellitus and its risk factors among individuals aged 15 years and above in Mizan-Aman town, Southwest Ethiopia, 2016: a cross sectional study. International Journal of Endocrinology, 2018.

  82. Balkrishna, A., Pokhrel, S., Tomer, M., Verma, S., Kumar, A., Nain, P., ... & Varshney, A. (2019). Anti-acetylcholinesterase activities of mono-herbal extracts and exhibited synergistic effects of the phytoconstituents: a biochemical and computational study. Molecules24(22), 4175

  83. Hampel, H., Mesulam, M. M., Cuello, A. C., Khachaturian, A. S., Vergallo, A., Farlow, M. R., ... & Khachaturian, Z. S. (2019). Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. The Journal of Prevention of Alzheimer's Disease6(1), 2–15

  84. Faraone, I., Rai, D. K., Russo, D., Chiummiento, L., Fernandez, E., Choudhary, A., & Milella, L. (2019). Antioxidant, antidiabetic, and anticholinesterase activities and phytochemical profile of Azorella glabra Wedd. Plants, 8(8), 265.

    Google Scholar 

  85. Casals, E., Pfaller, T., Duschl, A., Oostingh, G. J., & Puntes, V. (2010). Time evolution of the nanoparticle protein corona. ACS Nano, 4(7), 3623–3632.

    Google Scholar 

  86. Berrecoso, G., Crecente-Campo, J., & Alonso, M. J. (2020). Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Delivery and Translational Research, 10(3), 730–750.

    Google Scholar 

  87. Adabi, M., Naghibzadeh, M., Adabi, M., Zarrinfard, M. A., Esnaashari, S. S., Seifalian, A. M., ... & Ghanbari, H. (2017). Biocompatibility and nanostructured materials: applications in nanomedicine. Artificial Cells, Nanomedicine, and Biotechnology45(4), 833–842

  88. Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., & Maaza, M. (2020). Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arabian Journal of Chemistry, 13(1), 606–619.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Dr. Mushtaq Ahmad, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, for plant identification.

Author information

Authors and Affiliations

Authors

Contributions

MAK perceived the idea, carried out experimental work, and wrote the manuscript. MARS and SK assisted in the experimental work. MS, MUA, and RA assisted in characterization analysis. SAIB supervised the project.

Corresponding author

Correspondence to Muhammad Aslam Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Ethical Approval

This article does not contain direct studies on human participants or animals performed by any of the authors.

Funding

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Chemically synthesized cerium oxide nanoparticles (C-CeO2-NPs) and green synthesized cerium oxide nanoparticles (G-CeO2-NPs) are compared.

The NPs were characterized using UV-Vis, XRD, FTIR, SEM, TEM, EDS, DLS, and Gamry potentiostat.

Chemical synthesis resulted in CeO2-NPs with higher yield and specific capacitance compared to green synthesis.

However, green synthesized CeO2-NPs were biologically more active and showed better antioxidant, antibacterial, antileishmanial, and enzyme inhibition properties.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Siddique, M.A.R., Sajid, M. et al. A Comparative Study of Green and Chemical Cerium Oxide Nanoparticles (CeO2-NPs): From Synthesis, Characterization, and Electrochemical Analysis to Multifaceted Biomedical Applications. BioNanoSci. 13, 667–685 (2023). https://doi.org/10.1007/s12668-023-01114-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01114-0

Keywords

Navigation