Skip to main content

Advertisement

Log in

A Photoactive Magnetic Nanoparticle-Porphyrin Biomaterial Capable of Upregulation of Cancer PDT Having a Concomitant Immune Signature in Noncancerous Cells

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

While most metal-based nanomaterials lack regulatory approval for clinical applications in pharmacology, the FDA-approved Feraheme (ferumoxytol) has been among the few exceptions. Further, the approval of several iron nanoparticles (NPs) in nanotherapeutics has inspired the need to develop a new immunoprotective biomaterial (BM) involving superparamagnetic iron oxide NPs. This article emphasizes the impact of superparamagnetic NPs on porphyrins in the capacity of intensifying their biological activities under biocompatible conditions. To explore the cancer photodynamic therapy (PDT) and post-PDT anti-inflammatory and immunoprotective significance in developing BMs as anti-cancer drugs, the photobiological significance of a hydrophilic BM of superparamagnetic Fe3O4 NP functionalized with a tri-pyridyl porphyrin photosensitizer (PS) through a flexible 4-phenylaminoacetic acid linker is investigated. Fluorescence confocal microscopy with spectral imaging indicated high uptake of the BM Fe3O4 NP-porphyrin (C-NP) in the human gastric cancer (AGS) cell line. The potential of the synthesized BM to promote apoptosis through the upregulation of p21 expression and sub-G0-G1 phase arrest of the cell cycle has been reported. Under PDT conditions, higher apoptosis rates were obtained by C-NP than its free base precursor C. The Fe3O4 NPs have been found to influence the porphyrin PS by enhancing their anti-inflammatory properties apparently by reducing nitric oxide (under light irradiation and in the dark), myeloperoxidase, and superoxide production in murine macrophages.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The Supporting Information (inclusive of characterization methods and experimental data) is available free of charge at www.

References

  1. Henderson, B. W., & Dougherty, T. J. (1992). How does photodynamic therapy work? Photochemical & Photobiological Sciences, 55, 145–157.

    Google Scholar 

  2. Marcus, S. L., & McIntyre, W. R. (2002). Emerging Drugs, Photodynamic therapy systems and applications. Expert Opinion, 7, 321–334.

    Google Scholar 

  3. Dolmans, D. E., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3, 380–387.

    Google Scholar 

  4. Ohtani, K., & Ikeda, N. (2016). Photodynamic therapy for lung cancer. Kyobu Geka Japanese Journal Thoracic Surgery Clinics, 69, 694–699.

    Google Scholar 

  5. Lucky, S. S., Soo, K. C., & Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical reviews, 115, 1990–2042.

    Google Scholar 

  6. Santiago-Raber, M.-L., Lawson, B. R., Dummer, W., Barnhouse, M., Koundouris, S., Wilson, C. B., Kono, D. H., & Theofilopoulos, A. N. (2001). Role of cyclin kinase inhibitor p21 in systemic autoimmunity. Journal of Immunology, 167, 4067–4074.

    Google Scholar 

  7. Abbas, T., & Dutta, A. (2009). p21 in cancer: Intricate networks and multiple activities. Nature Reviews Cancer, 9, 400–414.

    Google Scholar 

  8. Chan, W.-H. (2011). Photodynamic treatment induces an apoptotic pathway involving calcium, nitric oxide, p53, p21-activated kinase 2, and c-Jun N-terminal kinase and inactivates survival signal in human umbilical vein endothelial cells. International Journal of Molecular Sciences, 12, 1041–1059.

    Google Scholar 

  9. Nakayama, T., Kobayashi, T., Shimpei, O., Fukuhara, H., Namikawa, T., Inoue, K., Hanazaki, K., Takahashi, K., Nakajima, M., & Tanaka, T. (2019). Photoirradiation after aminolevulinic acid treatment suppresses cancer cell proliferation through the HO-1/p21 pathway. Photodiagnosis and Photodynamic Therapy, 28, 10–17.

    Google Scholar 

  10. Rehman, M. U., Rashid, S., Arafah, A., Qamar, W., Alsaffar, R. M., Ahmad, A., Almatroudi, N. M., Alqahtani, S., Rashid, S. M., & Ahmad, S. B. (2020). Piperine regulates Nrf-2/Keap-1 signalling and exhibits anticancer effect in experimental colon carcinogenesis in Wistar rats. Biology, 9, 302.

    Google Scholar 

  11. Woo, H. D., & Kim, J. (2013). Dietary flavonoid intake and risk of stomach and colorectal cancer. World Journal of Gastroenterology, 19, 1011.

    Google Scholar 

  12. Pollard, J. W. (2009). Trophic macrophages in development and disease. Nature Reviews Immunology, 9, 259–270.

    Google Scholar 

  13. Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews Immunology, 3, 23–35.

    Google Scholar 

  14. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23, 549–555.

    Google Scholar 

  15. Ojalvo, L. S., King, W., Cox, D., & Pollard, J. W. (2009). High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. American Journal of Pathology, 174, 1048–1064.

    Google Scholar 

  16. Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. Journal of Immunology, 184, 702–712.

    Google Scholar 

  17. G. Hu, M. Guo, J. Xu, F. Wu, J. Fan, Q. Huang, G. Yang, Z. Lv, X. Wang, Y. Jin (2019) Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Frontiers in Immunology. 10

  18. Vitale, I., Manic, G., Coussens, L. M., Kroemer, G., & Galluzzi, L. (2019). Macrophages and metabolism in the tumor microenvironment. Cell Metabolism, 30, 36–50.

    Google Scholar 

  19. Ghazanfari, M. R., Kashefi, M., Shams, S. F., & Jaafari, M. R. (2016). Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochemistry Research International, 2016, 1–32.

    Google Scholar 

  20. Issa, B., Obaidat, I. M., Albiss, B. A., & Haik, Y. (2013). Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. International Journal of Molecular Sciences, 14, 21266–21305.

    Google Scholar 

  21. Liu, X., Jin, Y., Liu, T., Yang, S., Zhou, M., Wang, W., & Yu, H. (2020). Iron-based theranostic nanoplatform for improving chemodynamic therapy of cancer. ACS Biomaterials of Science and Engineering, 6, 4834–4845.

    Google Scholar 

  22. Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33, 2373–2387.

    Google Scholar 

  23. Yan, L., Amirshaghaghi, A., Huang, D., Miller, J., Stein, J. M., Busch, T. M., Cheng, Z., & Tsourkas, A. (2018). Protoporphyrin IX (PpIX)-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters for magnetic resonance imaging and photodynamic therapy. Advanced Functional Materials, 28, 1707030.

    Google Scholar 

  24. Nafiujjaman, M., Revuri, V., Nurunnabi, M., Jae Cho, K., & Lee, Y.-K. (2015). Photosensitizer conjugated iron oxide nanoparticles for simultaneous in vitro magneto-fluorescent imaging guided photodynamic therapy. Chemical Communications, 51, 5687–5690.

    Google Scholar 

  25. Yan, L., Luo, L., Amirshaghaghi, A., Miller, J., Meng, C., You, T., Busch, T. M., Tsourkas, A., & Cheng, Z. (2019). Dextran-Benzoporphyrin Derivative (BPD) Coated superparamagnetic iron oxide nanoparticle (SPION) micelles for T2-weighted magnetic resonance imaging and photodynamic therapy. Bioconjugate Chemistry, 30, 2974–2981.

    Google Scholar 

  26. Bolfarini, G. C., Siqueira-Moura, M. P., Demets, G. J. F., Morais, P. C., & Tedesco, A. C. (2012). In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbit[7]uril zinc phthalocyanine complex on melanoma. Journal of Photochemistry and Photobiology B Biology, 115, 1–4.

    Google Scholar 

  27. H. Gu, K. Xu, Z. Yang, C. K. Chang, B. Xu (2005) Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles—a potential candidate for bimodal anticancer therapy. Chemical Communications 4270–4272.

  28. Pellosi, D. S., Macaroff, P. P., Morais, P. C., & Tedesco, A. C. (2018). Magneto low-density nanoemulsion (MLDE): A potential vehicle for combined hyperthermia and photodynamic therapy to treat cancer selectively. Materials Science and Engineering: C, 92, 103–111.

    Google Scholar 

  29. Vieira Ferreira, L. F., Ferreira Machado, I., Gama, A., Lochte, F., Socoteanu, R. P., & Boscencu, R. (2020). A, Surface photochemical studies of nano-hybrids of A3B porphyrins and Fe3O4 silica-coated nanoparticles. Journal of Photochemistry and Photobiology, 387, 112152.

    Google Scholar 

  30. Penon, O., Marín, M. J., Amabilino, D. B., Russell, D. A., & Pérez-García, L. (2016). Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy. Journal of Colloid and Interface Science, 462, 154–165.

    Google Scholar 

  31. Mbakidi, J. P., Bregier, F., Ouk, T. S., Granet, R., Alves, S., Riviere, E., Chevreux, S., Lemercier, G., & Sol, V. (2015). Magnetic dextran nanoparticles that bear hydrophilic porphyrin derivatives: Bimodal agents for potential application in photodynamic therapy. Chempluschem, 80, 1416–1426.

    Google Scholar 

  32. Balivada, S., Rachakatla, R. S., Wang, H., Samarakoon, T. N., Dani, R. K., Pyle, M., Kroh, F. O., Walker, B., Leaym, X., Koper, O. B., Tamura, M., Chikan, V., Bossmann, S. H., & Troyer, D. L. (2010). A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: A mouse study. BMC Cancer, 10, 119.

    Google Scholar 

  33. Zhang, H., Li, Y. H., Chen, Y., Wang, M. M., Wang, X. S., & Yin, X. B. (2017). Fluorescence and magnetic resonance dual-modality imaging-guided photothermal and photodynamic dual-therapy with magnetic porphyrin-metal organic framework nanocomposites. Science Reports, 7, 44153.

    Google Scholar 

  34. Rajkumar, S., & Prabaharan, M. (2017). Theranostics based on iron oxide and gold nanoparticles for imaging- guided photothermal and photodynamic therapy of cancer. Current Topics in Medicinal Chemistry, 17, 1858–1871.

    Google Scholar 

  35. Sengupta, D., Das, S., Sharma, D., Chattopadhyaya, S., Mukherjee, A., Mazumdar, Z. H., Das, B., Basu, S., & Sengupta, M. (2022). An anti-inflammatory Fe3O4-porphyrin nanohybrid capable of apoptosis through upregulation of p21 kinase inhibitor having immunoprotective properties under anticancer PDT conditions. ChemMedChem, 17, e202100550.

    Google Scholar 

  36. Xu, Z., Hou, Y., & Sun, S. (2007). Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. Journal of the American Chemical Society, 129, 8698–8699.

    Google Scholar 

  37. Gouterman, M. (1961). Spectra of porphyrins. Journal of Molecular Spectroscopy, 6, 138–163.

    Google Scholar 

  38. Antonangelo, A. R., Westrup, K. C. M., Burt, L. A., Bezzu, C. G., Malewschik, T., Machado, G. S., Nunes, F. S., McKeown, N. B., & Nakagaki, S. (2017). crystallographic characterization and homogeneous catalytic activity of novel unsymmetric porphyrins. RSC Advanced Synthesis, 7, 50610–50618.

    Google Scholar 

  39. Dechan, P., Devi Bajju, G., & Sood, P. (2020). Trans A2B2 porphyrins: Synthesis, crystal structure determinations and Hirshfeld surface analysis. ChemistrySelect, 5, 7298–7309.

    Google Scholar 

  40. D. Sengupta, (2006) University of Sydney

  41. Aragón, F. H., Coaquira, J. A. H., Villegas-Lelovsky, L., da Silva, S. W., Cesar, D. F., Nagamine, L. C. C. M., Cohen, R., Menéndez-Proupin, E., & Morais, P. C. (2015). Evolution of the doping regimes in the Al-doped SnO2 nanoparticles prepared by a polymer precursor method. Journal of Physics: Condensed Matter, 27, 095301.

    Google Scholar 

  42. Li, Z., Wang, D., Xu, M., Wang, J., Hu, X., Anwar, S., Tedesco, A. C., Morais, P. C., & Bi, H. (2020). Fluorine-containing graphene quantum dots with a high singlet oxygen generation applied for photodynamic therapy. Journal of Materials Chemistry B, 8, 2598–2606.

    Google Scholar 

  43. Mikhaylova, M., Kim, D. K., Bobrysheva, N., Osmolowsky, M., Semenov, V., Tsakalakos, T., & Muhammed, M. (2004). Superparamagnetism of magnetite nanoparticles: Dependence on surface modification. Langmuir, 20, 2472–2477.

    Google Scholar 

  44. Kodama, R. H., Berkowitz, A. E., McNiff, E., Jr., & Foner, S. (1996). Surface spin disorder in NiFe 2 O 4 nanoparticles. Physical Review Letters, 77, 394–397.

    Google Scholar 

  45. Farhanian, D., De Crescenzo, G., & Tavares, J. R. (2018). Large-scale encapsulation of magnetic iron oxide nanoparticles via syngas photo-initiated chemical vapor deposition. Science Report, 8, 1–11.

    Google Scholar 

  46. Mahajan, P. G., Dige, N. C., Vanjare, B. D., Phull, A. R., Kim, S. J., Hong, S. K., & Lee, K. H. (2018). Synthesis, photophysical properties and application of new porphyrin derivatives for use in photodynamic therapy and cell imaging. Journal of Fluorescence, 28, 871–882.

    Google Scholar 

  47. Mahajan, P. G., Dige, N. C., Vanjare, B. D., Kim, C. H., Seo, S. Y., & Lee, K. H. (2020). Design and synthesis of new porphyrin analogues as potent photosensitizers for photodynamic therapy: Spectroscopic approach. Journal of Fluorescence, 30, 397–406.

    Google Scholar 

  48. Mahajan, P. G., Dige, N. C., Vanjare, B. D., Eo, S.-H., Seo, S.-Y., Kim, S. J., Hong, S.-K., Choi, C.-S., & Lee, K. H. (2019). A potential mediator for photodynamic therapy based on silver nanoparticles functionalized with porphyrin. Journal of Photochemistry and Photobiology A: Chemistry, 377, 26–35.

    Google Scholar 

  49. Sengupta, D., Mazumdar, Z. H., Mukherjee, A., Sharma, D., Halder, A. K., Basu, S., & Jha, T. (2018). Benzamide porphyrins with directly conjugated and distal pyridyl or pyridinium groups substituted to the porphyrin macrocycles: Study of the photosensitising abilities as inducers of apoptosis in cancer cells under photodynamic conditions. Journal of Photochemistry and Photobiology. B, Biology, 178, 228–236.

    Google Scholar 

  50. Sengupta, D., Timilsina, U., Mazumder, Z. H., Mukherjee, A., Ghimire, D., Markandey, M., Upadhyaya, K., Sharma, D., Mishra, N., & Jha, T. (2019). Dual activity of amphiphilic Zn (II) nitroporphyrin derivatives as HIV-1 entry inhibitors and in cancer photodynamic therapy. European Journal of Medicinal Chemistry, 174, 66–75.

    Google Scholar 

  51. Sharma, D., Mazumder, Z. H., Sengupta, D., Mukherjee, A., Sengupta, M., Das, R. K., Barbhuiya, M. H., Palit, P., & Jha, T. (2021). Cancer photocytotoxicity and anti-inflammatory response of cis-A2B2 type meso-p-nitrophenyl and p-hydroxyphenyl porphyrin and its zinc(II) complex: A synthetic alternative to the THPP synthon. New Journal of Chemistry, 45, 2060–2068.

    Google Scholar 

  52. Shimizu, S., Shinohara, Y., & Tsujimoto, Y. (2000). Bax and Bcl-x L independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene, 19, 4309–4318.

    Google Scholar 

  53. Jiang, S., Cai, J., Wallace, D. C., & Jones, D. P. (1999). Cytochrome c-mediated apoptosis in cells lacking mitochondrial DNA signaling pathway involving release and caspase 3 activation is conserved. International Journal of Biological Chemistry, 274, 29905–29911.

    Google Scholar 

  54. Jo, W.-S., Jeong, M.-H., Jin, Y.-H., Jang, J.-Y., Nam, B.-H., Son, S.-H., Choi, S.-S., Yoo, Y.-H., Kang, C.-D., Lee, J.-D., & Jeong, S.-J. (2005). Loss of mitochondrial membrane potential and caspase activation enhance apoptosis in irradiated K562 cells treated with herbimycin A. International Journal of Radiation Biology, 81, 531–543.

    Google Scholar 

  55. Oh, J. M., Lee, J., Im, W. T., & Chun, S. (2019). Ginsenoside Rk1 induces apoptosis in neuroblastoma cells through loss of mitochondrial membrane potential and activation of caspases. International Journal of Molecular Sciences, 20, 1213–1230.

    Google Scholar 

  56. Liu, J., Zhao, Y., Shi, Z., & Bai, Y. (2019). Antitumor effects of helenalin in doxorubicin-resistant leukemia cells are mediated via mitochondrial mediated apoptosis, loss of mitochondrial membrane potential, inhibition of cell migration and invasion and downregulation of PI3-kinase/AKT/m-TOR signalling pathway. Journal of BUON, 24, 2068–2074.

    Google Scholar 

  57. Lam, T.-L., Tong, K.-C., Yang, C., Kwong, W.-L., Guan, X., Li, M.-D., Kar-Yan Lo, V., Lai-Fung Chan, S., Lee Phillips, D., Lok, C.-N., & C.-M,. (2019). Luminescent ruffled iridium(iii) porphyrin complexes containing N-heterocyclic carbene ligands: Structures, spectroscopies and potent antitumor activities under dark and light irradiation conditions. Chemical Science, 10, 293–309.

    Google Scholar 

  58. Karunakaran, S. C., Babu, P. S. S., Madhuri, B., Marydasan, B., Paul, A. K., Nair, A. S., Rao, K. S., Srinivasan, A., Chandrashekar, T. K., Rao, C. M., Pillai, R., & Ramaiah, D. (2019). In vitro demonstration of apoptosis mediated photodynamic activity and NIR nucleus imaging through a novel porphyrin. ACS Chemical Biology, 8, 127–132.

    Google Scholar 

  59. Ikeda, A., Satake, S., Mae, T., Ueda, M., Sugikawa, K., Shigeto, H., Funabashi, H., & Kuroda, A. (2017). Photodynamic activities of porphyrin derivative–cyclodextrin complexes by photoirradiation. ACS Medicinal Chemistry Letters, 8, 555–559.

    Google Scholar 

  60. Panieri, E., & Santoro, M. M. (2016). ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Disease, 7, e2253–e2253.

    Google Scholar 

  61. Valadez-Cosmes, P., Raftopoulou, S., Mihalic, Z. N., Marsche, G., & Kargl, J. (2022). Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacology and Therapeutics, 236, 108052.

    Google Scholar 

  62. Khan, A. A., Alsahli, M. A., & Rahmani, A. H. (2018). Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Medical Sciences, 6, 33.

    Google Scholar 

  63. Jantan, I., Haque, M. A., Ilangkovan, M., & Arshad, L. (2019). Zerumbone from Zingiber zerumbet inhibits innate and adaptive immune responses in Balb/C mice. International Immunopharmacology, 73, 552–559.

    Google Scholar 

  64. Chi, D. S., Qui, M., Krishnaswamy, G., Li, C., & Stone, W. (2009). regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines. Nitric oxide, 8, 127–132.

    Google Scholar 

  65. Babior, B. M. (1999). NADPH oxidase: An update. Blood, 93, 1464–1476.

    Google Scholar 

  66. Storz, P. (2005). Reactive oxygen species in tumor progression. Frontiers in Bioscience, 10, 1881–1896.

    Google Scholar 

  67. Liou, G. Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research, 44, 479–496.

    Google Scholar 

  68. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 1–13.

    Google Scholar 

  69. Huang, X., Chen, J., Wu, W., Yang, W., Zhong, B., Qing, X., & Shao, Z. (2020). Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta biomaterialia, 109, 229–243.

    Google Scholar 

  70. Reina, G., Peng, S., Jacquemin, L., Andrade, A. F., & Bianco, A. (2020). Hard nanomaterials in time of viral pandemics. ACS nano, 14, 9364–9388.

    Google Scholar 

  71. Anselmo, A. C., & Mitragotri, S. (2019). Nanoparticles in the clinic: An update. Bioengineering of Translational Medicine, 4, e10143.

    Google Scholar 

  72. Huang, Y., Hsu, J. C., Koo, H., & Cormode, D. P. (2022). Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics, 12, 796–816.

    Google Scholar 

  73. Bahadar, H., Maqbool, F., Niaz, K., & Abdollahi, M. (2016). Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 20, 1–11.

    Google Scholar 

  74. Egbuna, C., Parmar, V. K., Jeevanandam, J., Ezzat, S. M., Patrick-Iwuanyanwu, K. C., Adetunji, C. O., Khan, J., Onyeike, E. N., Uche, C. Z., Akram, M., Ibrahim, M. S., El Mahdy, N. M., Awuchi, C. G., Saravanan, K., Tijjani, H., Odoh, U. E., Messaoudi, M., Ifemeje, J. C., Olisah, M. C., … Ibeabuchi, C. G. (2021). Nanotoxicology. Journal of Toxicology, Toxicity of nanoparticles in biomedical application, 2021, 9954443.

    Google Scholar 

  75. Piktel, E., Niemirowicz, K., Wątek, M., Wollny, T., Deptuła, P., & Bucki, R. (2016). Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. Journal of Nanobiotechnology, 14, 39.

    Google Scholar 

Download references

Acknowledgements

STIC-SAIF Kochi is acknowledged for the NMR; we thank Dr. Ramkrishna Laha, Postdoctoral Associate, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, for helping us with the mass spectra. The authors further acknowledge the help and guidance received from Prof. Subrata Banerjee, Ex-professor and Head, Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics (SINP), Kolkata; Dr. Yashmin Choudhury, Department of Biotechnology, Assam University, Silchar, India; and Dr. Aviva Levina, School of Chemistry, The University of Sydney, Australia.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript. DS conceived, designed, and standardized the experiments by initially synthesizing the precursor porphyrins. DS synthesized the nanoparticles and functionalized them along with SD and ZHM. The biological studies were carried out by AM and SC at the Department of Zoology, Charuchandra College, Kolkata 700 029, India, and the School of Biological Sciences, Ramkrishna Mission Vivekananda Educational & Research Institute (RKMVERI), Narendrapur, Kolkata 700 103, India. MS and BD performed the immunomodulatory experiments on macrophage cell line at the Department of Biotechnology, Assam University, Silchar 788 011, India. AM conducted the photobiological assays related to ROS and GSH in AGS cell line. PP helped with the interpretation of the results of the photobiological assays along with DS and AM. DS performed the Alder’s synthesis under various conditions, performed different methods of isolation and characterization of the various porphyrin derivatives at Assam University, Silchar (AUS), and performed lifetime emission experiments along with SB at Saha Institute of Nuclear Physics, Kolkata 700 064, India.

Corresponding author

Correspondence to Devashish Sengupta.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

As investigators, we conducted animal research ethically and humanely by using the minimum number of animals needed for scientifically valid results and ensuring appropriate housing, feeding, and sanitation. We administered appropriate anesthetics, analgesics, or tranquilizers to minimize any pain and discomfort, and obtained approval and oversight from an institutional animal experiment committee.

Consent for Publication

All the authors have reviewedand registered their consent to the final version of the manuscript.

Informed Consent

Our work did not involve any experiments on human subjects, as such, informed consent is not applicable to the current research work.

Funding Statement

This work was supported by the DBT project (Reg. No. BT/PR25024/NER/95/961/2017) granted to Devashish Sengupta by the Department of Biotechnology, Ministry of Science and Technology, Government of India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1659 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Das, S., Mazumdar, Z.H. et al. A Photoactive Magnetic Nanoparticle-Porphyrin Biomaterial Capable of Upregulation of Cancer PDT Having a Concomitant Immune Signature in Noncancerous Cells. BioNanoSci. 13, 625–637 (2023). https://doi.org/10.1007/s12668-023-01104-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01104-2

Keywords

Navigation