Skip to main content
Log in

Anti-neoplastic Effects of Gold Nanoparticles Synthesized Using Green Sources on Cervical and Melanoma Cancer Cell Lines

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The cytotoxic and anti-proliferative effects of gold nanoparticles synthesized from green sources on cervical (HeLa) and melanoma (A375) cancer cells have been studied. These nanoparticles were synthesized using sodium citrate, tannic acid, lemongrass extract, and green tea extract to compare the effects of different reducing agents on the ability to affect cancer cell viability. The nanoparticles were characterized using absorption and Fourier-transform infrared (FT-IR) spectroscopy, particle-size analysis, and scanning electron microscopy (SEM). Cancer cells were treated with gold nanoparticles at concentrations ranging from 25 to 100 μg/mL for 48 h and revealed dose-dependent cytotoxicity. The effects on cell viability were mediated by induction of apoptosis, as poly (ADP-ribose) polymerase (PARP) cleavage was observed in HeLa and A375 cells treated with tannic acid gold nanoparticles and in HeLa cells treated with green tea gold nanoparticles. Additionally, cell proliferation assays revealed decreased proliferation of A375 cells treated with green synthesized, but not traditional gold nanoparticles. Collectively, these results suggest that gold nanoparticles synthesized using plant extracts have a promising potential as a cancer treatment method as they exhibit both pro-apoptotic and anti-proliferative effects towards multiple cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mott, D., Galkowski, J., Wang, L., Luo, J., & Zhong, C. J. (2007). Langmuir, 23, 5740–5745.

    Article  Google Scholar 

  2. Suchomel, P., Kvitek, L., Prucek, R., Panacek, A., Halder, A., Vajda, S., & Zboril, R. (2018). Science and Reports, 8, 4589.

    Article  Google Scholar 

  3. Huang, K. C., & Ehrman, S. H. (2007). Langmuir, 23, 1419–1426.

    Article  Google Scholar 

  4. Pandian, A. M., Karthikeyan, C., Rajasimman, M., & Dinesh, M. G. (2015). Ecotoxicology and Environmental Safety, 121, 211–217.

    Article  Google Scholar 

  5. Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). Discussions of the Faraday Society, 11, 55–75.

    Article  Google Scholar 

  6. Bhatti, M. M., & Abdelsalam, S. I. (2021). Waves in Random and Complex Media. https://doi.org/10.1080/17455030.2021.1998728:1-26

    Article  Google Scholar 

  7. Thumma, T., Mishra, S. R., Abbas, M. A., Bhatti, M. M., & Abdelsalam, S. I. (2022). Applied Mathematics and Computation, 421, 126927.

    Article  Google Scholar 

  8. Bouché, M., Hsu, J. C., Dong, Y. C., Kim, J., Taing, K., & Cormode, D. P. (2020). Bioconjugate Chemistry, 31, 303–314.

    Article  Google Scholar 

  9. Gole, A., & Murphy, C. J. (2004). Chemistry of Materials, 16, 3633–3640.

    Article  Google Scholar 

  10. Rai, A., Singh, A., Ahmad, A., & Sastry, M. (2006). Langmuir, 22, 736–741.

    Article  Google Scholar 

  11. Sun, Y., & Xia, Y. (2002). Science, 298, 2176–2179.

    Article  Google Scholar 

  12. Marciniak, L., Nowak, M., Trojanowska, A., Tylkowski B., & Jastrzab R., (2020). Materials (Basel) 13 5444.

  13. Sahoo, S. K., Parveen, S., & Panda, J. J. (2007). Nanomedicine: Nanotechnology. Biology and Medicine, 3, 20–31.

    Google Scholar 

  14. Thakor, A. S., Jokerst, J., Zavaleta, C., Massoud, T. F., & Gambhir, S. S. (2011). Nano Letters, 11, 4029–4036.

    Article  Google Scholar 

  15. Boldeiu, A., Simion, M., Mihalache, I., Radoi, A., Banu, M., Varasteanu, P., Nadejde, P., Vasile, E., Acasandrei, A., Popescu, R. C., Savu, D., & Kusko, M. (2019). Journal of Photochemistry and Photobiology B: Biology, 197, 111519.

    Article  Google Scholar 

  16. Wang, L., Xu, J., Yan, Y., Liu, H., Karunakaran, T., & Li, F. (2019). Artificial Cells Nanomedicine and Biotechnology, 47, 1617–1627.

    Article  Google Scholar 

  17. Baharara, J., Ramezani, T., Divsalar, A., Mousavi, M., & Seyedarabi, A. (2016). Avicenna Journal of Medical Biotechnology, 8, 75–83.

    Google Scholar 

  18. Ke, Y., Al Aboody, M. S., Alturaiki, W., Alsagaby, S. A., Alfaiz, F. A., Veeraraghavan, V. P., & Mickymaray, S. (2019). Artificial Cells, Nanomedicine, and Biotechnology, 47, 1938–1946.

    Article  Google Scholar 

  19. Arvizo, R. R., Saha, S., Wang, E., Robertson, J. D., Bhattacharya, R., & Mukherjee, P. (2013). Proceedings of the National Academy of Sciences, 110, 6700–6705.

    Article  Google Scholar 

  20. Bhattacharya, R., Patra, C. R., Verma, R., Kumar, S., Greipp, P. R., & Mukherjee, P. (2007). Advanced Materials, 19, 711–716.

    Article  Google Scholar 

  21. Bankar, A., Joshi, B., Kumar, A. R., & Zinjarde, S. (2010). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368, 58–63.

    Article  Google Scholar 

  22. Castro, L., Blázquez, M. L., Muñoz, J. A., González, F., García-Balboa, C., & Ballester, A. (2011). Process Biochemistry, 46, 1076–1082.

    Article  Google Scholar 

  23. Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Biotechnology Progress, 22, 577–583.

    Article  Google Scholar 

  24. AswathyAromal, S., & Philip, D. (2012). Physica E: Low-dimensional Systems and Nanostructures, 44, 1692–1696.

    Article  Google Scholar 

  25. Kabir, S. R., Asaduzzaman, A., Amin, R., Haque, A. T., Ghose, R., Rahman, M. M., Islam, J., Amin, M. B., Hasan, I., Debnath, T., Chun, B. S., Zhao, X., Rahman Khan, M. K., & Alam, M. T. (2020). ACS Omega, 5, 20599–20608.

    Article  Google Scholar 

  26. Padalia, H., & Chanda, S. (2021). BioNanoScience, 11, 281–294.

    Article  Google Scholar 

  27. Arvindganth, R., & Kathiravan, G. (2019). BioNanoScience, 9, 839–847.

    Article  Google Scholar 

  28. Orlowski, P., Tomaszewska, E., Ranoszek-Soliwoda, K., Gniadek, M., Labedz, O., Malewski, T., Nowakowska, J., Chodaczek, G., Celichowski, G., Grobelny, J., & Krzyzowska, M. (2018). Frontiers in Immunology, 9, 1–23.

    Article  Google Scholar 

  29. Lopes, L. C. S., Brito, L. M., Bezerra, T. T., Gomes, K. N., Carvalho, F. A., Chaves, M. H., & Cantanhede, W. (2018). Chemical Sciences: An Acad Bras Ciênc, 90, 2679–2689.

    Google Scholar 

  30. Mukherjee, S., Ghosh, S., Das, D. K., Chakraborty, P., Choudhury, S., Gupta, P., Adhikary, A., Dey, S., & Chattopadhyay, S. (2015). The Journal of Nutritional Biochemistry, 26, 1283–1297.

    Article  Google Scholar 

  31. Chen, J., Li, Y., Fang, G., Cao, Z., Shang, Y., Alfarraj, S., Ali Alharbi, S., Li, J., Yang, S., & Duan, X. (2021). Arabian Journal of Chemistry, 14, 103000.

    Article  Google Scholar 

  32. Zhao, W., Li, J., Zhong, C., Zhang, X., & Bao, Y. (2021). Drug Delivery, 28, 985–994.

    Article  Google Scholar 

  33. Bharadwaj, K. K., Rabha, B., Pati, S., Sarkar, T., Choudhury, B. K., Barman, A., Bhattacharjya, D., Srivastava, A., Baishya, D., Edinur, H. A., Abdul Kari, Z., & Mohd Noor, N. H. (2021). Molecules, 26, 6389.

    Article  Google Scholar 

  34. Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., & Sastry, M. (2004). Nature Materials, 3, 482–488.

    Article  Google Scholar 

  35. Liu, X., Atwater, M., Wang, J., & Huo, Q. (2007). Colloids and Surfaces B: Biointerfaces, 58, 3–7.

    Article  Google Scholar 

  36. Verma, H. N., Singh, P., & Chavan, R. M. (2014). Veterinary World, 7, 72–77.

    Article  Google Scholar 

  37. Brumbaugh, A. D., Cohen, K. A., & St, S. K. (2014). Angelo. ACS Sustainable Chemistry & Engineering, 2, 1933–1939.

    Article  Google Scholar 

  38. Virmani, I., Sasi, C., Priyadarshini, E., Kumar, R., Sharma, S. K., Singh, G. P., Pachwarya, R. B., Paulraj, R., Barabadi, H., Saravanan, M., & Meena, R. (2020). Journal of Cluster Science, 31, 867–876.

    Article  Google Scholar 

  39. Ahmeda, A., Zangeneh, A., & Zangeneh, M. M. (2020). Applied Organometallic Chemistry, 34, e5290.

    Google Scholar 

  40. Woźniak, A., Malankowska, A., Nowaczyk, G., Grześkowiak, B. F., Tuśnio, K., Słomski, R., Zaleska-Medynska, A., & Jurga, S. (2017). Journal of Materials Science: Materials in Medicine, 28, 92.

    Google Scholar 

  41. Jeyaraj, M., Arun, R., Sathishkumar, G., MubarakAli, D., Rajesh, M., Sivanandhan, G., Kapildev, G., Manickavasagam, M., Thajuddin, N., & Ganapathi, A. (2014). Materials Research Bulletin, 52, 15–24.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Susquehanna University for the financial support for the project, Monica Hoover (Director of Environmental Engineering & Science Lab, Bucknell University) for the assistance with the ZetaSizer, and Julie Anderson (Materials Characterization Laboratory, Pennsylvania State University) for obtaining the SEM images.

Funding

No external funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavithra Vivekanand or Swarna Basu.

Ethics declarations

Informed Consent

Informed consent was not required for this study.

Research Involving Human Participants and/or Animals

No human participants or animal subjects were used in this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 287 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dickson, J., Weaver, B., Vivekanand, P. et al. Anti-neoplastic Effects of Gold Nanoparticles Synthesized Using Green Sources on Cervical and Melanoma Cancer Cell Lines. BioNanoSci. 13, 194–202 (2023). https://doi.org/10.1007/s12668-022-01056-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-01056-z

Keywords

Navigation