Skip to main content

Advertisement

Log in

Structural, Morphological and Optical Studies of CeO2 Nanoparticles Synthesized Using Aqueous Leaf Extract of Pometia pinnata

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Cerium oxide nanoparticles (CeO2 NPs) were synthesized using aqueous leaf extract of Pometia pinnata acting as an oxidizing, capping, and stabilizing agent. The structural, morphological, and optical properties of the synthesized CeO2 NPs (S-CeO2) were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), field emission-scanning electron microscopy (FE-SEM), field emission-transmission electron microscopy (FE-TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS), and photoluminescence (PL). XRD results confirmed the formation of a single and pure cubic phase of CeO2 NPs with crystallite sizes ranging 6–9 nm. The FT-IR analysis exhibit Ce–O stretching around 600–400 cm−1. SEM and TEM images showed almost spherical shapes of synthesized CeO2 NPs with particle size 3–28 nm. FE-TEM and SAED displayed highly crystalline lattice fringes. The optical studies using UV–Vis DRS and PL showed lowered band gap energy of 2.66 eV and stimulated response, respectively. XPS studies further confirmed the formation of S-CeO2 and valence band-XPS revealed reduction of band gap energy. This study showed that the green synthesized CeO2 NPs using aqueous leaf extract of Pometia pinnata have acquired enhanced optical properties and could be extended for synthesis of other metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, Z., Niu, X., Lin, Z., Wang, N., Shen, H., Liu, W., Sun, K., Fu, Y. Q., & Wang, Z. (2016). Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature. Journal of Alloys and Compounds, 682, 647–653. https://doi.org/10.1016/j.jallcom.2016.04.311

    Article  Google Scholar 

  2. Elahi, B., Mirzaee, M., Darroudi, M., Kazemi Oskuee, R., Sadri, K., & Amiri, M. S. (2019). Preparation of cerium oxide nanoparticles in Salvia macrosiphon Boiss seeds extract and investigation of their photo-catalytic activities. Ceramics International, 45(4), 4790–4797. https://doi.org/10.1016/j.ceramint.2018.11.173

    Article  Google Scholar 

  3. Iranmanesh, T., Foroughi, M. M., Jahani, S., Shahidi Zandi, M., & Hassani Nadiki, H. (2020). Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta, 207(June 2019), 120318. https://doi.org/10.1016/j.talanta.2019.120318

    Article  Google Scholar 

  4. Cheng, J.; Song, L.; Wu, R.; Li, S.; Sun, Y.; Zhu, H.; Qiu, W.; He, H. Promoting effect of microwave irradiation on CeO2-TiO2 catalyst for selective catalytic reduction of NO by NH3. Journal of Rare Earths 2019, 38 (1). https://doi.org/10.1016/j.jre.2019.04.014

  5. Mishra, S., Soren, S., Debnath, A. K., Aswal, D. K., Das, N., & Parhi, P. (2018). Rapid Microwave – Hydrothermal Synthesis of CeO2 Nanoparticles for simultaneous adsorption/photodegradation of organic dyes under visible light. Optik (Stuttg), 169(February), 125–136. https://doi.org/10.1016/j.ijleo.2018.05.045

    Article  Google Scholar 

  6. Simonenko, T. L.; Simonenko, N. P.; Mokrushin, A. S.; Simonenko, E. P.; Glumov, O. V.; Mel’nikova, N. A.; Murin, I. V.; Kalinina, M. V.; Shilova, O. A.; Sevastyanov, V. G.; et al. Microstructural, electrophysical and gas-sensing properties of CeO2–Y2O3 thin films obtained by the sol-gel process. Ceramics international 2019, July, 2–12. https://doi.org/10.1016/j.ceramint.2019.08.241.

  7. Yuan, X., Chen, H., Tian, W., Shi, J., Zhou, W., Cheng, F., Li, S.-D., & Shao, Z. (2019). Utilization of low-concentration coal-bed gas to generate power using a core-shell catalyst-modified solid oxide fuel cell. Renewable Energy, 147, 602–609. https://doi.org/10.1016/j.renene.2019.09.023

    Article  Google Scholar 

  8. Sha, M. A., Meenu, P. C., Sumi, V. S., Bhagya, T. C., Sreelekshmy, B. R., & Shibli, S. M. A. (2020). Tuning of electron transfer by Ni – P decoration on CeO2– TiO2 heterojunction for enhancement in photocatalytic hydrogen generation. Materials Science in Semiconductor Processing, 105, 104742. https://doi.org/10.1016/j.mssp.2019.104742

    Article  Google Scholar 

  9. Sangsefidi, F. S., Salavati-Niasari, M., Mazaheri, S., & Sabet, M. (2017). Controlled green synthesis and characterization of CeO2 nanostructures as materials for the determination of ascorbic acid. Journal of Molecular Liquids, 241, 772–781. https://doi.org/10.1016/j.molliq.2017.06.078

    Article  Google Scholar 

  10. Li, L., Zhu, B., Zhang, J., Yan, C., & Wu, Y. (2018). Electrical properties of nanocube CeO2 in advanced solid oxide fuel cells. International Journal of Hydrogen Energy, 43(28), 12909–12916. https://doi.org/10.1016/j.ijhydene.2018.05.120

    Article  Google Scholar 

  11. Sendra, M., Volland, M., Balbi, T., Fabbri, R., Yeste, M. P., Gatica, J. M., Canesi, L., & Blasco, J. (2018). Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of zeta potential, shape and biocorona formation. Aquatic Toxicology, 200(April), 13–20. https://doi.org/10.1016/j.aquatox.2018.04.011

    Article  Google Scholar 

  12. Sebastiammal, S., Mariappan, A., Neyvasagam, K., & Lesly Fathima, A. (2019). Annona muricata inspired synthesis of CeO2 nanoparticles and their antimicrobial activity. Materials Today: Proceedings, 9(April 2018), 627–632. https://doi.org/10.1016/j.matpr.2018.10.385

    Article  Google Scholar 

  13. Khan, M. M., Saadah, N. H., Khan, M. E., Harunsani, M. H., Tan, A. L., & Cho, M. H. (2019). Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Materials Science in Semiconductor Processing, 91(October 2018), 194–200. https://doi.org/10.1016/j.mssp.2018.11.030

    Article  Google Scholar 

  14. Khan, A. U.; Malik, N.; Khan, M.; Cho, M. H.; Khan, M. M. Fungi-Assisted Silver Nanoparticle synthesis and their applications. Bioprocess and Biosystems Engineering 2018, 41 (1). https://doi.org/10.1007/s00449-017-1846-3.

  15. Matussin, S., Harunsani, M. H., Tan, A. L., & Khan, M. M. (2020). Plant-extract-mediated SnO2 nanoparticles: Synthesis and applications. ACS Sustainable Chemistry & Engineering, 8(8), 3040–3054. https://doi.org/10.1021/acssuschemeng.9b06398

    Article  Google Scholar 

  16. Naidi, S. N., Harunsani, M. H., Tan, A. L., & Khan, M. M. (2021). Green-synthesized CeO2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. Journal of Materials Chemistry B, 9, 5599–5620. https://doi.org/10.1039/D1TB00248A

    Article  Google Scholar 

  17. Rahman, A., Harunsani, M. H., Tan, A. L., & Khan, M. M. (2021). Zinc Oxide and zinc oxide-based nanostructures: Biogenic and phytogenic synthesis, Properties and Applications. Bioprocess and Biosystems Engineering, 44, 1333–1372. https://doi.org/10.1007/s00449-021-02530-w

    Article  Google Scholar 

  18. SenthilKumar, S., Lellala, K., Ashok, M., Priyadharsan, A., Sanjeeviraja, C., & Rajendran, A. (2018). Green synthesis of CeO2–TiO2 compound using Cleome chelidonii leaf extract for excellent photocatalytic activity. Journal of Materials Science: Materials in Electronics, 29(16), 14022–14030. https://doi.org/10.1007/s10854-018-9534-x

    Article  Google Scholar 

  19. Parwaiz, S., Khan, M. M., & Pradhan, D. (2019). CeO2-based nanocomposites: An advanced alternative to TiO2 and ZnO in sunscreens. Materials Express, 9(3), 185–202. https://doi.org/10.1166/mex.2019.1495

    Article  Google Scholar 

  20. Magudieshwaran, R.; Ishii, J.; Raja, K. C. N.; Terashima, C.; Venkatachalam, R.; Fujishima, A.; Pitchaimuthu, S. Green and chemical synthesized CeO2 nanoparticles for Photocatalytic indoor air pollutant degradation. Materials Letters 2019, 239, 40–44. S0167577X18319475.

  21. Vennila, R., Hasina Banu, A., Kamaraj, P., Devikala, S., Arthanareeswari, M., Selvi, J. A., Pushpamalini, T., Buela, J. G., Priya, D., & Sivasankari, R. (2018). A novel glucose sensor using green synthesized Ag doped CeO2 nanoparticles. Materials Today: Proceedings, 5(2), 8683–8690. https://doi.org/10.1016/j.matpr.2017.12.294

    Article  Google Scholar 

  22. Sharma, J. K., Srivastava, P., Ameen, S., Akhtar, M. S., Sengupta, S. K., & Singh, G. (2017). Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. Materials Research Bulletin, 91, 98–107. https://doi.org/10.1016/j.materresbull.2017.03.034

    Article  Google Scholar 

  23. Sangsefidi, F. S., Nejati, M., Verdi, J., & Salavati-Niasari, M. (2017). Green synthesis and characterization of cerium oxide nanostructures in the presence carbohydrate sugars as a capping agent and investigation of their cytotoxicity on the mesenchymal stem cell. Journal of Cleaner Production, 156, 741–749. https://doi.org/10.1016/j.jclepro.2017.04.114

    Article  Google Scholar 

  24. Reddy Yadav, L. S.; Manjunath, K.; Archana, B.; Madhu, C.; Raja Naika, H.; Nagabhushana, H.; Kavitha, C.; Nagaraju, G. Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities. European Physical Journal Plus 2016, 131 (5). https://doi.org/10.1140/epjp/i2016-16154-y

  25. Maensiri, S., Masingboon, C., Laokul, P., Jareonboon, W., Promarak, V., Anderson, P. L., & Seraphin, S. (2007). Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles. Crystal Growth & Design, 7(5), 950–955. https://doi.org/10.1021/cg0608864

    Article  Google Scholar 

  26. Suedee, A., Tewtrakul, S., & Panichayupakaranant, P. (2013). Anti-HIV-1 integrase compound from Pometia pinnata leaves. Pharmaceutical Biology, 51(10), 1256–1261. https://doi.org/10.3109/13880209.2013.786098

    Article  Google Scholar 

  27. Purwidyaningrum, I., Sukandar, E. Y., & Fidrianny, I. (2017). Diuretic activity of matoa leaves extracts (Pometia Pinnata) and its influence on potassium and sodium levels. Asian Journal of Pharmaceutical and Clinical Research, 10(14), 31. https://doi.org/10.22159/ajpcr.2017.v10s2.19481

    Article  Google Scholar 

  28. Syarifah, S.; Imawan, C.; Handayani, W.; Djuhana, D. Biosynthesis of ferric oxide nanoparticles using pometia pinnata J.R.Frost. & G.Forst. Leaves Water Extract. AIP Conference Proceedings 2023, 2018, 20054. https://doi.org/10.1063/1.5064051.

  29. Naidi, S. N., Khan, F., Tan, A. L., Harunsani, M. H., Kim, Y.-M., & Khan, M. M. (2021). Green synthesis of CeO2 and Zr/Sn-dual doped CeO2 nanoparticles with photoantioxidant and antibiofilm activities. Biomaterials Science, 9, 4854–4869. https://doi.org/10.1039/D1BM00298H

    Article  Google Scholar 

  30. Naidi, S. N., Khan, F., Tan, A. L., Harunsani, M. H., Kim, Y.-M., & Khan, M. M. (2021). Photoantioxidant and antibiofilm studies of green synthesized Sn-doped CeO2 nanoparticles using aqueous leaf extracts of Pometia pinnata. New Journal of Chemistry, 45(17), 7816–7829. https://doi.org/10.1039/D1NJ00416F

    Article  Google Scholar 

  31. Dittrich, M., & Schumacher, G. (2014). Evolution of crystallite size, lattice parameter and internal strain in al precipitates during high energy ball milling of partly amorphous Al87Ni8La5 alloy. Materials Science and Engineering A, 604, 27–33. https://doi.org/10.1016/j.msea.2014.03.004

    Article  Google Scholar 

  32. Hossain, S. T., Azeeva, E., Zhang, K., Zell, E. T., Bernard, D. T., Balaz, S., & Wang, R. (2018). a comparative study of co oxidation over cu-o-ce solid solutions and cuo/ceo2 nanorods catalysts. Applied Surface Science, 455(June), 132–143. https://doi.org/10.1016/j.apsusc.2018.05.101

    Article  Google Scholar 

  33. Kurian, M., & Kunjachan, C. (2014). Investigation of size dependency on lattice strain of nanoceria particles synthesised by wet chemical methods. International Nano Letters, 4(4), 73–80. https://doi.org/10.1007/s40089-014-0122-7

    Article  Google Scholar 

  34. Arumugam, A., Karthikeyan, C., Haja Hameed, A. S., Gopinath, K., Gowri, S., & Karthika, V. (2015). Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Materials Science and Engineering C, 49, 408–415. https://doi.org/10.1016/j.msec.2015.01.042

    Article  Google Scholar 

  35. Khare, A., Choudhary, R. J., Bapna, K., Phase, D. M., & Sanyal, S. P. (2010). Resonance photoemission studies of (111) oriented CeO2 thin film grown on Si (100) substrate by pulsed laser deposition. Journal of Applied Physics, 108(10), 103712. https://doi.org/10.1063/1.3514571

    Article  Google Scholar 

  36. Pradhan, G. K.; Parida, K. Fabrication of iron-cerium mixed oxide: An efficient photocatalyst for dye degradation. International Journal of Engineering Science Technologies 2011, 2 (8). https://doi.org/10.4314/ijest.v2i8.63780

  37. Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Phanichphant, S. Kinetics study of photocatalytic activity of flame-made unloaded and Fe-loaded CeO2 nanoparticles. International Journal of Photoenergy 2013, 2013 (May 2014)https://doi.org/10.1155/2013/484831

  38. Khan, M. M., Ansari, S. A., Lee, J.-H., Ansari, M. O., Lee, J., & Cho, M. H. (2014). Electrochemically active biofilm assisted synthesis of Ag@CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes. Journal of Colloid and Interface Science, 431, 255–263. https://doi.org/10.1016/j.jcis.2014.06.026

    Article  Google Scholar 

  39. Chen, Z., Ding, Y., Fang, N., & Liu, C. (2018). Fabrication and Photocatalytic Activities of Dark Brown CeO2 with a Crystalline-Core/disordered-Shell Heterostructure. Materials Research Express, 5(6), 65905. https://doi.org/10.1088/2053-1591/aac801

    Article  Google Scholar 

  40. Khan, M. E., Khan, M. M., Min, B. K., & Cho, M. H. (2018). Microbial fuel cell assisted band gap narrowed TiO2 for visible lightinduced photocatalytic activities and power generation. Science and Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-19617-2

    Article  Google Scholar 

  41. Malleshappa, J., Nagabhushana, H., Prasad, B. D., Sharma, S. C., Vidya, Y. S., & Anantharaju, K. S. (2016). Structural, photoluminescence and thermoluminescence properties of CeO2 nanoparticles. Optik (Stuttg), 127(2), 855–861. https://doi.org/10.1016/j.ijleo.2015.10.114

    Article  Google Scholar 

  42. Khan, M. M., Ansari, S. A., Pradhan, D., Han, D. H., Lee, J., & Cho, M. H. (2014). Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Industrial and Engineering Chemistry Research, 53(23), 9754–9763. https://doi.org/10.1021/ie500986n

    Article  Google Scholar 

  43. Khan, M. M., Ansari, S. A., Ansari, M. O., Min, B. K., Lee, J., & Cho, M. H. (2014). Biogenic fabrication of Au@CeO2 nanocomposite with enhanced visible light activity. Journal of Physical Chemistry C, 118(18), 9477–9484. https://doi.org/10.1021/jp500933t

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the FIC block grant UBD/RSCH/1.4/FICBF(b)/2021/035 received from Universiti Brunei Darussalam, Brunei Darussalam. The author would also like to acknowledge the Centre of Advanced Material and Energy Sciences for helping with XRD analysis.

Author information

Authors and Affiliations

Authors

Contributions

SNN: methodology, investigation, data curation, writing — original draft. MHH: supervision, writing — review and editing. ALT: supervision, writing — review and editing. MMK: supervision, conceptualization, funding acquisition, writing — review and editing.

Corresponding author

Correspondence to Mohammad Mansoob Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

The authors declare that no humans and animals were involved in this work.

Informed Consent

All types of required consents were obtained.

Funding Statement

Funding “FIC block grant UBD/RSCH/1.4/FICBF(b)/2021/035” received from the Universiti Brunei Darussalam, Brunei Darussalam, was used.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidi, S.N., Harunsani, M.H., Tan, A.L. et al. Structural, Morphological and Optical Studies of CeO2 Nanoparticles Synthesized Using Aqueous Leaf Extract of Pometia pinnata. BioNanoSci. 12, 393–404 (2022). https://doi.org/10.1007/s12668-022-00956-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00956-4

Keywords

Navigation