Skip to main content

Advertisement

Log in

Bioinformatic Analysis of a Grimelysin-like Protease in the Klebsiella oxytoca Strain NK-1

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Bacterial intracellular proteinases play a relevant role in coordinating various cellular processes. The genome of the uropathogenic Klebsiella oxytoca NK-1 encodes the gene prtKO, homologous to grimelysin of Serratia grimesii. BLAST analysis showed that a lot of bacteria encode grimelysin-like proteinases, known to be mainly distributed in Enterobacterales. Phylogenetic analysis classified these proteins into 10 clusters. PrtKO was predicted to contain conservative motifs typical for grimelysin using bioinformatic tools. In addition, the structure of metalloproteinase-containing genomic loci is conservative among enterobacteria and consists of the genes involved in global physiological processes. Maximal total intracellular proteolytic activity of K. oxytoca NK-1 is observed during the late stationary phase of growth in LB medium at 37 °C. Limited proteolysis of actin indicates the presence of a grimelysin-like proteinase in bacterial cells during the late stationary growth phase. Hence, we present a first report of a new grimelysin-like intracellular metalloproteinase in K. oxytoca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Code Availability

Not applicable.

References

  1. Adeolu, M., Alnajar, S., Naushad, S., & Gupta, R. S. (2016). Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 66, 5575–5599. https://doi.org/10.1099/ijsem.0.001485

    Article  Google Scholar 

  2. Bozhokina, E., Khaitlina, S., & Adam, T. (2008). Grimelysin, a novel metalloprotease from Serratia grimesii, is similar to ECP32. Biochemical and Biophysical Research Communications, 367, 888–892. https://doi.org/10.1016/j.bbrc.2008.01.003

    Article  Google Scholar 

  3. Bozhokina, E. S., Tsaplina, O. A., Efremova, T. N., et al. (2011). Bacterial invasion of eukaryotic cells can be mediated by actin-hydrolysing metalloproteases grimelysin and protealysin. Cell Biology International, 35, 111–118. https://doi.org/10.1042/CBI20100314

    Article  Google Scholar 

  4. Bozhokina, E., Kever, L., & Khaitlina, S. (2020). The Serratia grimesii outer membrane vesicles-associated grimelysin triggers bacterial invasion of eukaryotic cells. Cell Biology International, 44, 2275–2283. https://doi.org/10.1002/cbin.11435

    Article  Google Scholar 

  5. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  Google Scholar 

  6. Breidenstein, E. B., Janot, L., Strehmel, J., et al. (2012). The Lon protease is essential for full virulence in Pseudomonas aeruginosa. PLoS ONE, 7, e49123. https://doi.org/10.1371/journal.pone.0049123

    Article  Google Scholar 

  7. Chiavolini, D., Memmi, G., Maggi, T., Iannelli, F., Pozzi, G., & Oggioni, M. R. (2003). The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice. BMC Microbiology, 3, 14. https://doi.org/10.1186/1471-2180-3-14

    Article  Google Scholar 

  8. Chukhontseva, K. N., Salnikov, V. V., Morenkov, O. S., Kostrov, S. V., & Demidyuk, I. V. (2019). Protealysin is not secreted constitutively. Protein and Peptide Letters, 26, 221–226. https://doi.org/10.2174/0929866526666181212114907

    Article  Google Scholar 

  9. Demidyuk, I. V., Kalashnikov, A. E., Gromova, T. Y., et al. (2006). Cloning, sequencing, expression, and characterization of protealysin, a novel neutral proteinase from Serratia proteamaculans representing a new group of thermolysin-like proteases with short N-terminal region of precursor. Protein Expression and Purification, 47, 551–561.

    Article  Google Scholar 

  10. Demidyuk, I., Gasanov, E., Safina, D., & Kostrov, S. (2008). Structural organization of precursors of thermolysin-like proteinases. Protein Journal, 27, 343–354. https://doi.org/10.1007/s10930-008-9143-2

    Article  Google Scholar 

  11. Demidyuk, I., Gromova, T., Polyakov, M., et al. (2010). Crystal structure of the protealysin precursor: Insights into propeptide function. Journal of Biological Chemistry, 285, 2003–2013. https://doi.org/10.1074/jbc.M109.015396

    Article  Google Scholar 

  12. Eckhard, U., Huesgen, P. F., Brandstetter, H., & Overall, C. M. (2014). Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen. Journal of Proteomics, 100, 102–114. https://doi.org/10.1016/j.jprot.2013.10.004

    Article  Google Scholar 

  13. Giliazeva, A. G., Shagimardanova, E. I., Shigapova, L. H., et al. (2019). Draft genome sequence and analysis of Klebsiella oxytoca strain NK-1 isolated from ureteral stent. Data in Brief, 24, 103853. https://doi.org/10.1016/j.dib.2019.103853

    Article  Google Scholar 

  14. Gong, Y., Xu, W., Cui, Y., et al. (2011). Immunization with a ZmpB-based protein vaccine could protect against pneumococcal diseases in mice. Infection and Immunity, 79, 867–878. https://doi.org/10.1128/IAI.00717-10

    Article  Google Scholar 

  15. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    Google Scholar 

  16. Hering, N. A., Fromm, A., Bücker, R. et al. (2019). Tilivalline- and tilimycin-independent effects of Klebsiella oxytoca on tight junction-mediated intestinal barrier impairment.https://doi.org/10.3390/ijms20225595

  17. Khaitlina, SYu., Smirnova, T. D., & Usmanova, A. M. (1988). Limited proteolysis of actin by a specific bacterial protease. FEBS Letters, 228, 172–174.

    Article  Google Scholar 

  18. Khaitlina, S., Bozhokina, E., Tsaplina, O., & Efremova, T. (2020). Bacterial actin-specific endoproteases grimelysin and protealysin as virulence factors contributing to the invasive activities of Serratia. International Journal of Molecular Sciences, 21, 4025. https://doi.org/10.3390/ijms21114025

    Article  Google Scholar 

  19. Konovalova, A., Søgaard-Andersen, L., & Kroos, L. (2014). Regulated proteolysis in bacterial development. FEMS Microbiology Reviews, 38, 493–522. https://doi.org/10.1111/1574-6976.12050

    Article  Google Scholar 

  20. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  Google Scholar 

  21. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  Google Scholar 

  22. Lloubès, R., Goemaere, E., Zhang, X., Cascales, E., & Duché, D. (2012). Energetics of colicin import revealed by genetic cross-complementation between the Tol and Ton systems. Biochemical Society Transactions, 40, 1480–1485. https://doi.org/10.1042/BST20120181

    Article  Google Scholar 

  23. Malekjamshidi, M. R., Zandi, H., & Eftekhar, F. (2020). Prevalence of extended-spectrum β-lactamase and integron gene carriage in multidrug-resistant Klebsiella species isolated from outpatients in Yazd, Iran. Iranian Journal of Medical Sciences, 45, 23–31. https://doi.org/10.30476/IJMS.2019.45334

    Article  Google Scholar 

  24. Marshall, N. C., Finlay, B. B., & Overall, C. M. (2017). Sharpening host defenses during infection: Proteases cut to the chase. Molecular and Cellular Proteomics, 16, S161–S171. https://doi.org/10.1074/mcp.O116.066456

    Article  Google Scholar 

  25. Odoki, M., Almustapha Aliero, A., Tibyangye, J., et al. (2019). Prevalence of bacterial urinary tract infections and associated factors among patients attending hospitals in Bushenyi District, Uganda. International Journal of Microbiology, 2019, 4246780. https://doi.org/10.1155/2019/4246780

    Article  Google Scholar 

  26. Okonechnikov, K., Golosova, O., Fursov, M., & UGENE team. (2012). Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics, 28, 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  Google Scholar 

  27. Pan, S., Malik, I. T., Thomy, D., Henrichfreise, B., & Sass, P. (2019). The functional ClpXP protease of Chlamydia trachomatis requires distinct clpP genes from separate genetic loci. Science and Reports, 9, 14129. https://doi.org/10.1038/s41598-019-50505-5

    Article  Google Scholar 

  28. Petersen, L. M., & Tisa, L. S. (2013). Friend or foe? A review of the mechanisms that drive Serratia towards diverse lifestyles. Canadian Journal of Microbiology, 59, 627–640. https://doi.org/10.1139/cjm-2013-0343

    Article  Google Scholar 

  29. Sekowska, A., Gospodarek, E., Janickca, G., Jachna-Sawicka, K., & Sawicki, M. (2006). Hydrolytic and haemolytic activity of Klebsiella pneumoniae and Klebsiella oxytoca. Medycyna Doswiadczalna I Mikrobiologia, 58(2), 135–141.

    Google Scholar 

  30. Subramanian, K., Henriques-Normark, B., & Normark, S. (2019). Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cellular Microbiology, 21, e13077. https://doi.org/10.1111/cmi.13077

    Article  Google Scholar 

  31. Sullivan, M. J., Petty, N. K., & Beatson, S. A. (2011). Easyfig: A genome comparison visualizer. Bioinformatics, 27, 1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  Google Scholar 

  32. Tian, Z., Cheng, S., Xia, B., et al. (2019). Pseudomonas aeruginosa ExsA regulates a metalloprotease, ImpA, that inhibits phagocytosis of macrophages. Infection and Immunity. https://doi.org/10.1128/IAI.00695-19

    Article  Google Scholar 

  33. Tsaplina, O. A., Efremova, T. N., Kever, L. V., et al. (2009). Probing for actinase activity of protealysin. Biochemistry (Moscow), 74, 648–654. https://doi.org/10.1134/s0006297909060091

    Article  Google Scholar 

  34. Tsaplina, O., Efremova, T., Demidyuk, I., & Khaitlina, S. (2012). Filamentous actin is a substrate for protealysin, a metalloprotease of invasive Serratia proteamaculans. FEBS Journal, 279, 264–274. https://doi.org/10.1111/j.1742-4658.2011.08420.x

    Article  Google Scholar 

  35. Wyres, K. L., Lam, M. M., & Holt, K. E. (2020). Population genomics of Klebsiella pneumoniae. Nature Reviews Microbiology, 18, 344–359. https://doi.org/10.1038/s41579-019-0315-1

    Article  Google Scholar 

  36. Wysocki, A. B., Bhalla-Regev, S. K., Tierno, P. M., Jr., et al. (2013). Proteolytic activity by multiple bacterial species isolated from chronic venous leg ulcers degrades matrix substrates. Biological Research for Nursing, 15, 407–415. https://doi.org/10.1177/1099800412464683

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed in accordance with the Russian Government Program of Competitive Growth of Kazan Federal University. We express our sincere gratitude to Yaw Akosah for his thoughtful comments and efforts toward improving our manuscript.

Funding

The study was funded by Russian Foundation for Basic Research (Project No. 18–34-00837).

Author information

Authors and Affiliations

Authors

Contributions

A. Mardanova and M. Sharipova conceived and designed the experiments and analyzed the data. Material preparation and data collection were performed by P. Misheeva. A. Giliazeva performed the experiments, analyzed and interpreted the data, and wrote the paper. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Adeliia G. Giliazeva.

Ethics declarations

Ethics Approval

Not applicable.

Research Involving Human and Animals Statement

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Molecular, Precision and Regenerative Medicine - 2021

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giliazeva, A.G., Misheeva, P.S., Sharipova, M.R. et al. Bioinformatic Analysis of a Grimelysin-like Protease in the Klebsiella oxytoca Strain NK-1. BioNanoSci. 12, 160–169 (2022). https://doi.org/10.1007/s12668-021-00924-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00924-4

Keywords

Navigation