Skip to main content
Log in

Synthesis, Biocompatibility, and Relaxometric Properties of Heavily Loaded Apoferritin with D-Glucuronic Acid-Coated Ultrasmall Gd2O3 Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Apoferritin (APO) with a diameter of ~12 nm is a naturally occurring protein assembly in living organisms. APO is made of 24 protein subunits that form a nanocage with an inner diameter of ~8 nm. Thus far, the loading of only a few nanoparticles inside the nanocage of APO has been reported. In this study, the mass loading of D-glucuronic acid (GA)-coated ultrasmall gadolinium oxide (Gd2O3) nanoparticles (UGNPs) (GA-UGNPs) (davg = 1.9 nm) inside and outside the nanocage of APO was investigated. The in vitro cytotoxicity and relaxometric properties were investigated. This study indicates that APO is an extremely useful bio-material, which can be used for mass loading of various nanoparticles for biomedical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data are available from the corresponding authors on request.

References

  1. Andrews, S. C., Arosio, P., Bottke, W., Briat, J.-F., von Darl, M., Harrison, P. M., Laulhère, J.-P., Levi, S., Lobreaux, S., & Yewdall, S. J. (1992). Structure, function, and evolution of ferritins. Journal of Inorganic Biochemistry, 47(3-4), 161–174.

    Google Scholar 

  2. Theil, E. C. (1987). Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annual Review of Biochemistry, 56, 289–315.

    Google Scholar 

  3. Zang, J., Chen, H., Zhao, G., Wang, F., & Ren, F. (2017). Ferritin cage for encapsulation and delivery of bioactive nutrients: From structure, property to applications. Critical Reviews in Food Science and Nutrition, 57(17), 3673–3683.

    Google Scholar 

  4. Yoshimura, H. (2006). Protein-assisted nanoparticle synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282-283, 464–470.

    Google Scholar 

  5. Wang, Z., Gao, H., Zhang, Y., Liu, G., Niu, G., & Chen, X. (2017). Functional ferritin nanoparticles for biomedical applications. Frontiers of Chemical Science and Engineering, 11(4), 633–646.

    Google Scholar 

  6. Heger, Z., Skalickova, S., Zitka, O., Adam, V., & Kizek, R. (2014). Apoferritin applications in nanomedicine. Nanomedicine (London), 9(14), 2233–2245.

    Google Scholar 

  7. Fan, J., Yin, J.-J., Ning, B., Wu, X., Hu, Y., Ferrari, M., Anderson, G. J., Wei, J., Zhao, Y., & Nie, G. (2011). Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials, 32(6), 1611–1618.

    Google Scholar 

  8. Zheng, B., Uenuma, M., Yamashita, I., & Uraoka, Y. (2010). Delivery of ferritin-encapsulated gold nanoparticles on desired surfaces. NSTI-Nanotech, 2010(3), 210–213 www.nsti.org. ISBN 978-1-4398-3415-2.

    Google Scholar 

  9. Zheng, B., Yamashita, I., Uenuma, M., Iwahori, K., Kobayashi, M., & Uraoka, Y. (2010). Site-directed delivery of ferritin-encapsulated gold nanoparticles. Nanotechnology, 21(4), 045305. https://doi.org/10.1088/0957-4484/21/4/045305.

    Article  Google Scholar 

  10. Petrucci, O. D., Hilton, R. J., Farrer, J. K., & Watt, R. K. (2019). A ferritin photochemical synthesis of monodispersed silver nanoparticles that possess antimicrobial properties. Journal of Nanomaterials, 2019, 9535708. https://doi.org/10.1155/2019/9535708.

    Article  Google Scholar 

  11. Ueno, T., Suzuki, M., Goto, T., Matsumoto, T., Nagayama, K., & Watanabe, Y. (2004). Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angewandte Chemie (International Edition in English), 43(19), 2527–2530.

    Google Scholar 

  12. Zhang, L., Laug, L., Münchgesang, W., Pippel, E., Gösele, U., Brandsch, M., & Knez, M. (2010). Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Letter, 10(1), 219–223.

    Google Scholar 

  13. Mosca, L., Falvo, E., Ceci, P., Poser, E., Genovese, I., Guarguaglini, G., & Colotti, G. (2017). Use of ferritin-based metal-encapsulated nanocarriers as anticancer agents. Applied Science, 7(1), 101. https://doi.org/10.3390/app7010101.

    Article  Google Scholar 

  14. Liu, X., Wei, W., Wang, C., Yue, H., Ma, D., Zhu, C., Ma, G., & Du, Y. (2011). Apoferritin-camouflaged Pt nanoparticles: Surface effects on cellular uptake and cytotoxicity. Journal of Materials Chemistry, 21(20), 7105–7110.

    Google Scholar 

  15. Pekarik, V., Peskova, M., Guran, R., Novacek, J., Heger, Z., Tripsianes, K., Kumar, J., & Adam, V. (2017). Visualization of stable ferritin complexes with palladium, rhodium and iridium nanoparticles detected by their catalytic activity in native polyacrylamide gels. Dalton Transactions, 46(40), 13690–13694.

    Google Scholar 

  16. Sennuga, A., van Marwijk, J., & Whiteley, C. G. (2012). Ferroxidase activity of apoferritin is increased in the presence of platinum nanoparticles. Nanotechnology, 23(3), 035102. https://doi.org/10.1088/0957-4484/23/3/035102.

    Article  Google Scholar 

  17. Kasyutich, O., Ilari, A., Fiorillo, A., Tatchev, D., Hoell, A., & Ceci, P. (2010). Silver ion incorporation and nanoparticle formation inside the cavity of Pyrococcus furiosus ferritin: Structural and size-distribution analyses. Journal of the American Chemical Society, 132(10), 3621–3627.

    Google Scholar 

  18. Wang, M., Yin, H., & Fu, Z. (2014). A label-free electrochemical biosensor for microRNA detection based on apoferritin-encapsulated Cu nanoparticles. Journal of Solid State Electrochemistry, 18(10), 2829–2835.

    Google Scholar 

  19. Gálvez, N., Sánchez, P., Domínguez-Vera, J. M., Soriano-Portillo, A., Clemente-León, M., & Coronado, E. (2006). Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles. Journal of Materials Chemistry, 16(26), 2757–2761.

    Google Scholar 

  20. Harada, T., & Yoshimura, H. (2013). Ferritin protein encapsulated photoluminescent rare earth nanoparticle. Journal of Applied Physics, 114(4), 044309. https://doi.org/10.1063/1.4816567.

    Article  Google Scholar 

  21. Meldrum, F. C., Douglas, T., Levi, S., Arosio, P., & Mann, S. (1995). Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. Journal of Inorganic Biochemistry, 58(1), 59–68.

    Google Scholar 

  22. Uchida, M., Flenniken, M. L., Allen, M., Willits, D. A., Crowley, B. E., Brumfield, S., Willis, A. F., Jackiw, L., Jutila, M., Young, M. J., & Douglas, T. (2006). Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. Journal of the American Chemical Society, 128(51), 16626–16633.

    Google Scholar 

  23. Sánchez, P., Valero, E., Gálvez, N., Domínguez-Vera, J. M., Marinone, M., Poletti, G., Corti, M., & Lascialfari, A. (2009). MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Dalton Transactions, 2009(5), 800–804.

    Google Scholar 

  24. Douglas, T., Dickson, D. P. E., Betteridge, S., Charnock, J., Garner, C. D., & Mann, S. (1995). Synthesis and structure of an iron (III) sulfide-ferritin bioinorganic nanocomposite. Science, 269(5220), 54–57.

    Google Scholar 

  25. Abbaspour, A., & Noori, A. (2012). Electrochemical detection of individual single nucleotide polymorphisms using monobase-modified apoferritin-encapsulated nanoparticles. Biosensors & Bioelectronics, 37(1), 11–18.

    Google Scholar 

  26. Li, M., Viravaidya, C., & Mann, S. (2007). Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles. Small, 3(9), 1477–1481.

    Google Scholar 

  27. Zhen, Z., Tang, W., Guo, C., Chen, H., Lin, X., Liu, G., Fei, B., Chen, X., Xu, B., & Xie, J. (2013). Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano, 7(8), 6988–6996.

    Google Scholar 

  28. Macone, A., Masciarelli, S., Palombarini, F., Quaglio, D., Boffi, A., Trabuco, M. C., Baiocco, P., Fazi, F., & Bonamore, A. (2019). Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells. Scientific Reports, 9, 11749. https://doi.org/10.1038/s41598-019-48037-z.

    Article  Google Scholar 

  29. Makino, A., Harada, H., Okada, T., Kimura, H., Amano, H., Saji, H., Hiraoka, M., & Kimura, S. (2011). Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent. Nanomedicine: Nanotechnology, Biology and Medicine, 7(5), 638–646.

    Google Scholar 

  30. Aime, S., Frullano, L., & Crich, S. G. (2002). Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angewandte Chemie (International Edition in English), 41(6), 1017–1019.

    Google Scholar 

  31. Aime, S., Cabella, C., Colombatto, S., Geninatti Crich, S., Gianolio, E., & Maggioni, F. (2002). Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. Journal of Magnetic Resonance Imaging, 16(4), 394–406.

    Google Scholar 

  32. Liang, M., Fan, K., Zhou, M., Duan, D., Zheng, J., Yang, D., Feng, J., & Yan, X. (2014). H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proceedings of the National Academy of Sciences, 111(41), 14900–14905.

    Google Scholar 

  33. Monti, D. M., Ferraro, G., & Merlino, A. (2019). Ferritin-based anticancer metallodrug delivery: Crystallographic, analytical and cytotoxicity studies. Nanomedicine: Nanotechnology, Biology and Medicine, 20, 101997. https://doi.org/10.1016/j.nano.2019.04.001.

    Article  Google Scholar 

  34. Szabó, I., Geninatti Crich, S., Alberti, D., Kálmán, F. K., & Aime, S. (2012). Mn loaded apoferritin as an MRI sensor of melanin formation in melanoma cells. Chemical Communications, 48(18), 2436–2438.

    Google Scholar 

  35. Geninatti Crich, S., Cutrin, J. C., Lanzardo, S., Conti, L., Kálmán, F. K., Szabó, I., Lago, N. R., Iolascon, A., & Aime, S. (2012). Mn-loaded apoferritin: a highly sensitive MRI imaging probe for the detection and characterization of hepatocarcinoma lesions in a transgenic mouse model. Contrast Media & Molecular Imaging, 7(3), 281–288.

    Google Scholar 

  36. Li, X., Zhang, Y., Sun, J., Chen, W., Wang, X., Shao, F., Zhu, Y., Feng, F., & Sun, Y. (2017). Protein nanocage-based photo-controlled nitric oxide releasing platform. ACS Applied Materials & Interfaces, 9(23), 19519–19524.

    Google Scholar 

  37. Park, J. Y., Baek, M. J., Choi, E. S., Woo, S., Kim, J. H., Kim, T. J., Jung, J. C., Chae, K. S., Chang, Y., & Lee, G. H. (2009). Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: Account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano, 3(11), 3663–3669.

    Google Scholar 

  38. Bridot, J.-L., Faure, A.-C., Laurent, S., Rivière, C., Billotey, C., Hiba, B., Janier, M., Josserand, V., Coll, J.-L., Elst, L. V., Muller, R., Roux, S., Perriat, P., & Tillement, O. (2007). Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. Journal of the American Chemical Society, 129(16), 5076–5084.

    Google Scholar 

  39. Gayathri, T., Sundaram, N. M., & Kumar, R. A. (2015). Gadolinium oxide nanoparticles for magnetic resonance imaging and cancer theranostics. Journal of Bionanoscience, 9(6), 409–423.

    Google Scholar 

  40. Alizadeh, M. J., Kariminezhad, H., Monfared, A. S., Mostafazadeh, A., Amani, H., Niksirat, F., & Pourbagher, R. (2019). An experimental study about the application of gadolinium oxide nanoparticles in magnetic theranostics. Materials Research Express, 6(6), 065025. https://doi.org/10.1088/2053-1591/ab0ce3.

    Article  Google Scholar 

  41. Pellico, J., Ellis, C. M., & Davis, J. J. (2019). Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media & Molecular Imaging, 2019, 1845637. https://doi.org/10.1155/2019/1845637.

    Article  Google Scholar 

  42. Ho, S. L., Cha, H., Oh, I. T., Jung, K.-H., Kim, M. H., Lee, Y. J., Miao, X., Tegafaw, T., Ahmad, M. Y., Chae, K. S., Chang, Y., & Lee, G. H. (2018). Magnetic resonance imaging, gadolinium neutron capture therapy, and tumor cell detection using ultrasmall Gd2O3 nanoparticles coated with polyacrylic acid-rhodamine B as a multifunctional tumor theragnostic agent. RSC Advances, 8(23), 12653–12665.

    Google Scholar 

  43. Ho, S. L., Choi, G., Yue, H., Kim, H.-K., Jung, K.-H., Park, J. A., Kim, M. H., Lee, Y. J., Kim, J. Y., Miao, X., Ahmad, M. Y., Marasini, S., Ghazanfari, A., Liu, S., Chae, K.-S., Chang, Y., & Lee, G. H. (2020). In vivo neutron capture therapy of cancer using ultrasmall gadolinium oxide nanoparticles with cancer-targeting ability. RSC Advances, 10(2), 865–874.

    Google Scholar 

  44. Caravan, P., Ellison, J. J., McMurry, T. J., & Lauffer, R. B. (1999). Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chemical Reviews, 99(9), 2293–2352.

    Google Scholar 

  45. Park, J. Y., Chang, Y., & Lee, G. H. (2015). Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: Current status and perspectives. Current Medicinal Chemistry, 22(5), 569–581.

    Google Scholar 

  46. Kim, T. J., Chae, K. S., Chang, Y., & Lee, G. H. (2013). Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents. Current Topics in Medicinal Chemistry, 13(4), 422–433.

    Google Scholar 

  47. Xu, W., Kattel, K., Park, J. Y., Chang, Y., Kim, T. J., & Lee, G. H. (2012). Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Physical Chemistry Chemical Physics, 14(37), 12687–12700.

    Google Scholar 

  48. Leinweber, G., Barry, D. P., Trbovich, M. J., Burke, J. A., Drindak, N. J., Knox, H. D., Ballad, R. V., Block, R. C., Danon, Y., & Severnyak, L. I. (2006). Neutron capture and total cross-section measurements and resonance parameters of gadolinium. Nuclear Science and Engineering, 154(3), 261–279.

    Google Scholar 

  49. Hosmane, N. S., Maguire, J. A., Zhu, Y., & Takagaki, M. (2012). Boron and gadolinium neutron capture therapy for cancer treatment. Singapore: World Scientific.

    Google Scholar 

  50. Shih, J. L., & Brugger, R. M. (1992). Gadolinium as a neutron capture therapy agent. Medical Physics, 19(3), 733–744.

    Google Scholar 

  51. Le, U. M., & Cui, Z. (2006). Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy. International Journal of Pharmaceutics, 312(1-2), 105–112.

    Google Scholar 

  52. Söderlind, F., Pedersen, H., Petoral, R. M., Käll, P. O., & Uvdal, K. (2005). Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. Journal of Colloid and Interface Science, 288(1), 140–148.

    Google Scholar 

  53. Kattel, K., Park, J. Y., Xu, W., Kim, H. G., Lee, E. J., Bony, B. A., Heo, W. C., Lee, J. J., Jin, S., Baeck, J. S., Chang, Y., Kim, T. J., Bae, J. E., Chae, K. S., & Lee, G. H. (2011). A facile synthesis, in vitro and in vivo MR studies of d-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Applied Materials & Interfaces, 3(9), 3325–3334.

    Google Scholar 

  54. Card no. 43-1014 (1997). JCPDS-International Centre for Diffraction Data, PCPDFWIN, vol. 1.30.

  55. Deacon, G. B., & Phillips, R. J. (1980). Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordination Chemistry Reviews, 33(3), 227–250.

    Google Scholar 

  56. Corbierre, M. K., Cameron, N. S., & Lennox, R. B. (2004). Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir, 20(7), 2867–2873.

    Google Scholar 

  57. Haynes, W. M., Lide, D. R., & Bruno, T. J. (2015-2016). CRC Handbook of Chemistry and Physics (96th ed.pp. 4–64). Boca Raton: CRC Press.

    Google Scholar 

  58. Lauffer, R. B. (1987). Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chemical Reviews, 87(5), 901–927.

    Google Scholar 

  59. Kang, S. I., Ranganathan, R. S., Emswiler, J. E., Kumar, K., Gougoutas, J. Z., Malley, M. F., & Tweedle, M. F. (1993). Synthesis, characterization, and crystal structure of the gadolinium(III) chelate of (1R,AR,JR)-α,α′,α″-trimethyl-l,4,7,10-tetraazacy-clododecane-1,4,7- triacetic acid (DO3MA). Inorganic Chemistry, 32(13), 2912–2918.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Korea Basic Science Institute for allowing us to use their XRD machine.

Funding

This study was supported by the Basic Science Research Program (Grant No. 2016R1D1A3B01007622 to GHL and 2020R1A2C2008060 to YC) of the National Research Foundation funded by the Ministry of Education, Science, and Technology of Korea.

Author information

Authors and Affiliations

Authors

Contributions

XM performed experiments and wrote a draft manuscript; HY and SLH partly contributed to experiments and data analysis; HC measured relaxivities; SM, AG, MYA, SL, and TT performed data analysis; KSC measured in vitro cellular toxicities; YC and GHL led the projects; and GHL wrote the manuscript.

Corresponding authors

Correspondence to Yongmin Chang or Gang Ho Lee.

Ethics declarations

Research Involving Humans and Animals Statement

Not applicable.

Informed Consent

All authors agreed to publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, X., Yue, H., Ho, S.L. et al. Synthesis, Biocompatibility, and Relaxometric Properties of Heavily Loaded Apoferritin with D-Glucuronic Acid-Coated Ultrasmall Gd2O3 Nanoparticles. BioNanoSci. 11, 380–389 (2021). https://doi.org/10.1007/s12668-021-00848-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00848-z

Keywords

Navigation