Skip to main content
Log in

Bioconvection of Nanofluid Due to Motile Gyrotactic Micro-Organisms with Ohmic Heating Effects Saturated in Porous Medium

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In proposed investigation, author offered numerical studies on gyrotactic micro-organisms in nanofluids by ohmic heating effect saturated in porous medium. Similarity transformations are taken into consideration to convert PDE into non-linear coupled ODE and thus solved by 5th-order Runge-Kutta-Fehlberg method by shooting technique. Physical parameters were explored on various profiles say velocity, temperature, concentration, and density of gyrotactic micro-organisms. Outcome of proposed investigation explores that with increasing effect of bioconvection Lewis number, bioconvection Peclet number and micro-organisms concentration difference parameter result in decline of density of motile micro-organisms’ profile. Code validations of proposed investigations were done with existing results in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pedley, T. J., Hill, N. A., & Kessler, J. O. (1988). The growth of bioconvection patterns in a uniform suspension of gyrotactic microorganism. Journal of Fluid Mechanics, 195, 223–237.

    Article  MathSciNet  Google Scholar 

  2. Pedley, T. J., & Kessler, J. O. (1990). A new continuum model for suspensions of gyrotactic micro-organisms. Journal of Fluid Mechanics, 212, 155–182.

    Article  MathSciNet  Google Scholar 

  3. Bees, M. A., & Hill, N. A. (1998). Linear bioconvection in a suspension of randomly swimming, gyrotactic micro-organisms. Physics of Fluids, 10(8), 18–64.

    Article  MathSciNet  Google Scholar 

  4. Hill, N. A., & Bees, M. A. (2002). Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow. AIP Physics of Fluids, 14, 25–98.

    Article  MathSciNet  Google Scholar 

  5. Kuznetsov, A. V., & Avramenko, A. A. (2004). Effects of small particles on the Stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth. International Communications in Heat and Mass Transfer, 31, 1–10.

    Article  Google Scholar 

  6. Kuznetsov, A. V., & Geng, P. (2005). The interaction of bioconvection caused by gyrotactic micro-organisms and settling of small solid particles. Int. J. Numer. Methods Heat Fluid Flow, 15, 328–547.

    Article  Google Scholar 

  7. Kuznetsov, A. V. (2006). The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. European Journal of Mechanics - B/Fluids, 25, 223–233.

    Article  MathSciNet  Google Scholar 

  8. Kuznetsov, A. V. (2010). The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int. Commun. Heat and Mass Transfer, 37, 1421–1425.

    Article  Google Scholar 

  9. Kuznetsov, A. V., & Bubnovich, V. (2012). Investigation of simultaneous effects of gyrotactic and oxytactic micro-organisms on nanofluid bio-thermal convection in porous medium. Journal of Porous Media, 15, 617–631.

    Article  Google Scholar 

  10. Xu, H., & Pop, I. (2014). Mixed convection flow of a nanofluid over a stretching surface with uniform free stream in the presence of both nanoparticles and gyrotactic micro-organisms. International Journal of Heat and Mass Transfer, 75, 610–623.

    Article  Google Scholar 

  11. Kandasamy, R. K., & Muhamad, R. (2016). MHD nanofluid flow containing gyrotactic microorganisms. WSEAS Transactions on Heat and Mass Transfer, 11, 30–45.

    Google Scholar 

  12. De, P., & Gorji, M. R. (2020). Activation energy and binary chemical reaction on unsteady MHD Williamson nanofluid containing motile gyrotactic microorganisms. Heat Transfer, 49(5), 3030–3043.

    Article  Google Scholar 

  13. De, P., Mondal, H., & Bera, U. K. (2014). Influence of nanofluids on magnetohydrodynamic heat and mass transfer over a non isothermal wedge with variable viscosity and thermal radiation. Journal of Nanofluids, 3(4), 391–398.

    Article  Google Scholar 

  14. De, P., Pal, D., Mondal, H., & Bera, U. K. (2017). Effects of thermophoresis and Brownian motion on magnetohydrodynamic convective radiative heat and mass transfer of a nanofluid over a non-linearly stretching sheet. Journal of Nanofluids, 6(1), 164–172.

    Article  Google Scholar 

  15. Oyelakin, I. S., Mondal, S., & Sibanda, P. (2016). Unsteady casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions. Alexandria Eng. J., 55(2), 1025–1035.

    Google Scholar 

  16. De, P. (2017). Thermophoresis and Brownian motion effects on dual solutions for unsteady Eyring-Powell nanofluid flow over a stretching/shrinking sheet. Journal of Nanofluids, 6(5), 956–959.

    Article  Google Scholar 

  17. Kumar, R., Sabir, A. S., & Bashir, M. N. (2020). Numerical simulation of three dimensional flow of radiating gray nanofluid through porous medium subjected to vibrational rotations and slip at liquid-sheet interface. Journal of Porous Media, 23(9), 865–881.

    Article  Google Scholar 

  18. Palani, S., Peri, K. K., & Rushi, B. K. (2020). Thermal dispersion effect on nanofluid: A revised model. Journal of Porous Media, 23(9), 923–941.

    Article  Google Scholar 

  19. Khan, S. U., & Shehzad, S. A. (2020). Flow of Jeffrey nanofluids over convectively heated oscillatory moving sheet with magnetic field and porosity effects. Journal of Porous Media, 23(9), 907–922.

    Article  Google Scholar 

  20. Nadeem, S., Rehman, M. I. U., Saleem, S., & Bonyah, E. (2020). Dual solutions in MHD stagnation point flow of nanofluid induced by porous stretching/shrinking sheet with anisotropic slip. AIP Advances, 10, 065207.

    Article  Google Scholar 

  21. Nawaz, M., Rafiq, S., Qureshi, I. H., & Saleem, S. (2020). Combined effects of partial slip and variable diffusion coefficient on mass and heat transfer subjected to chemical reaction. Physica Scripta, 95(3), 035222.

    Article  Google Scholar 

  22. Ali, A., Saleem, S., Mumraiz, S., Saleem, A., Awais, M., & Khan Marwat, D. N. (2020). Investigation of TiO2-Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffery material. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-020-09648-1.

  23. Saleem, S., Rafiq, H., Qahtani, A. A., Aziz, M. A. E., Malik, M. Y., & Animasaun, I. L. (2019). Magneto Jeffrey nanofluid bioconvection over a rotating vertical cone due to gyrotactic microorganism. Mathematical Problems in Engineering, 2019, 3478037.

    Article  MathSciNet  Google Scholar 

  24. Naqvi, S. M. R. S., Muhammad, T., Saleem, S., & Kim, H. M. (2020). Significance of non-uniform heat generation/ absorption in hydromagnetic flow of nanofluid due to stretching shrinking disk. Physica A: Statistical Mechanics and its Applications, 553, 123970.

    Article  Google Scholar 

  25. Saleem, S., Qasim, M., Alderremy, A., & Noreen, S. (2020). Heat Transfer enhancement using different shapes of Cu nanoparticles in the flow of water based Nanofluid. Phy.Scrip., 95(5), 055209.

    Article  Google Scholar 

  26. Gopal, D., Saleem, S., Jagadha, S., Ahmed, F., Almatroud, O. A., & Kishan, N. (2021). Numerical analysis of higher order chemical reaction on electrically MHD nanofluid under influence of viscous dissipation. Alexandria Engineering Journal, 60(1), 1861–1871.

    Article  Google Scholar 

  27. Pal, D., & Mondal, H. (2012). Non-Darcian buoyancy driven heat and mass transfer over a stretching sheet in a porous medium with radiation and ohmic heating. International Journal of Nonlinear Science, 14(1), 115–123.

    MathSciNet  Google Scholar 

  28. De, P., Mondal, H., & Bera, U. K. (2016). Dual solution of heat and mass transfer of nanofluid over a stretching/shrinking sheet with thermal radiation. Mecc., 51(1), 117–124.

    Article  MathSciNet  Google Scholar 

  29. Ishak, A., Nazar, R., & Pop, I. (2008). Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat and Mass Transfer, 44, 291–297.

    Article  Google Scholar 

  30. Chen, C. H. (1998). Laminar mixed convection adjacent to vertical continuously stretching sheet. Heat and Mass Transfer, 33, 471–476.

    Article  Google Scholar 

  31. Grubka, L. G., & Bobba, K. M. (1985). Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME Journal of Heat Transfer, 107, 248–250.

    Article  Google Scholar 

  32. De, P. (2019). Impact of dual solutions of nanofluid containing motile gyrotactic micro-organisms with thermal radiation. BioNanoscience, 9(1), 13–20.

    Article  Google Scholar 

Download references

Funding

The authors have not received any financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poulomi De.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Research Involving Humans and Animals Statement

This manuscript does not contain any research involving humans and animals statement.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, P. Bioconvection of Nanofluid Due to Motile Gyrotactic Micro-Organisms with Ohmic Heating Effects Saturated in Porous Medium. BioNanoSci. 11, 658–666 (2021). https://doi.org/10.1007/s12668-021-00844-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00844-3

Keywords

Navigation