Skip to main content

Advertisement

Log in

Effective Dose of Herbal Gold Nanoparticles for Protection of Acetaminophen-Induced Hepatotoxicity in Male Albino Rats

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Overdose of acetaminophen causes hepatotoxicity due to NAPQI formation. The green synthesis of gold nanoparticles represents as a novel drug carrier in the field of drug delivery system. This study was designed to investigate the protective effect of green synthesized herbal gold nanoparticles (AuNPs) using the aqueous bark extract of Terminalia arjuna against acetaminophen-induced hepatotoxicity in an experimental rat model. In this study, group 1 served as normal control; group 2 received acetaminophen intraperitoneally at a concentration of 500 mg/kg of body weight for 14 days; and groups 3, 4, 5, and 6 were co-administered with acetaminophen (500 mg/kg/day) and AuNPs (55, 175, 550, 2000 μg/kg/day) intraperitoneally for 14 days. After 14 days, all animals were sacrificed for biochemical and histopathological studies. Among different experimental doses of AuNPs (55, 175, 550, 2000 μg/kg/day), dose 175 μg/kg/day showed more potent activity towards wellness parameters, biochemical indices, and histopathological studies. There was a significant (p < 0.05) increase in SGOT, SGPT, ALP, bilirubin, and MDA levels, but a significant decrease in SOD, CAT, and GSH activities in the hepatotoxic group in comparison with the control group, but co-administration with AuNPs (175 μg/kg/day) restored the activities of these biochemical markers. Hence, this study confirmed that AuNPs at a dose 175 μg/kg/day has better hepatoprotective efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yapar, K., Kart, A., Karapehlivan, M., Atakisi, O., Tunca, R., Erginsoy, S., et al. (2007). Hepatoprotective effect of L-carnitine against acute acetaminophen toxicity in mice. Experimental and Toxicologic Pathology, 59, 121–128. https://doi.org/10.1016/j.etp.2007.02.009.

    Article  Google Scholar 

  2. Hinson, J. A. (1980). Biochemical toxicology of acetaminophen. Rev BiochemToxicol, 2, 103–130 https://ci.nii.ac.jp/naid/10024866256.

    Google Scholar 

  3. Virupaksha Gupta, K. L., Pallavi, G., Patgiri, B. J., & Kodlady, N. (2011). Relevance of rasa shastra in 21st century with special reference to lifestyle disorders (LSD). International Journal of Research Ayurveda Pharmacy, 2, 1628–1632.

    Google Scholar 

  4. Kulkarni, S. S. (2013). Bhasma and nanomedicine. International Journal of Research Pharmacy, 4, 10–16.

    Article  Google Scholar 

  5. Paul, S., & Chugh, A. (2011). Assessing the role of Ayurvedic ‘Bhasmas’ as ethno nanomedicine in the metal based nanomedicine patent regime. Journal Intellectual Property Rights, 16, 509–515 http://nopr.niscair.res.in/handle/123456789/13060.

    Google Scholar 

  6. Slitt, A. M. L., Dominick, P. K., Roberts, J. C., & Cohen, S. D. (2005). Effects of ribose cysteine pretreatment on hepatic and renal acetaminophen metabolite formation and glutathione depletion. Basic & Clinical Pharmacology & Toxicology, 96, 487–494. https://doi.org/10.1111/j.1742-7843.2005.pto_96613.x.

    Article  Google Scholar 

  7. Gamel El-din AM, Mostafa AM, Al-Shabanah O, Al Bekairi AM, Nagi MN (2003) Protective effect of Arabic gum against acetaminophen induced hepatotoxicity in mice. Pharmacological Research 48:631-635. https://doi.org/10.1016/S1043-6618(03)00226-3

  8. Presscott, L. (2005). Oral or intravenous N-acetylcysteine for acetaminophen poisoning? Annals of Emergency Medicine, 45, 409–413. https://doi.org/10.1016/j.annemergmed.2004.09.028.

    Article  Google Scholar 

  9. Melo, D. A. S., Saciura, V. C., Poloni, J. A. T., Oliveria, C. S. A., Filho, J. C. F. A., Padilha, R. Z., et al. (2006). Evaluation of renal enzyme uria and cellular excretion as a marker of acute nephrotoxicity due to an overdose of acetaminophen in Wistar rats. Clin Chem Acta, 373, 88–91. https://doi.org/10.1016/j.cca.2006.05.006.

    Article  Google Scholar 

  10. Liebert, J. J., Matlawska, I., Bylka, W. M., & Marek, M. (2005). Protective effect of Aquilegia vulgaris (L) on APAP-induced oxidative stress in rats. J Ethano pharmacol, 97, 351–358. https://doi.org/10.1016/j.jep.2004.11.027.

    Article  Google Scholar 

  11. Hu, J. J., Yoo, J. S. H., Lin, M., Wang, E. J., & Yang, C. S. (1996). Protective effects of diallyl disulfide on acetaminophen induced toxicities. Food and Chemical Toxicology, 34, 963–969. https://doi.org/10.1016/S0278-6915(96)00057-9.

    Article  Google Scholar 

  12. Montilla, P., Barcos, M., Munoz, M. C., Bujalance, I., Munoz-Castaneda, J. R., & Tunez, I. (2005). Red wine prevents brain oxidative stress and nephropathyinstreptozotocin-induced diabetic rats. Journal of Biochemistry and Molecular Biology, 38, 539–544.

    Google Scholar 

  13. Mansour, H. H., Hafez, H. F., & Fahmy, N. M. (2006). Silymarin modulates cisplatin-induced oxidative stress and hepatotoxicity in rats. Journal of Biochemistry and Molecular Biology, 39, 656–661. https://doi.org/10.5483/BMBRep.2006.05.23.

    Article  Google Scholar 

  14. Law, K., & Brunt, E. M. (2010). Nonalcoholic fatty liver disease. Clinics in Liver Disease, 14, 591–604. https://doi.org/10.1146/annurev-pathol-121808-102132.

    Article  Google Scholar 

  15. Freitas Jr., R. A. (2005). What is nanomedicine. Nanomedicine: Nanotechnology, Biology and Medicine, 1, 2. https://doi.org/10.1016/j.nano.2004.11.003.

    Article  Google Scholar 

  16. Kulkarni, N., & Muddapur, U. (2014). Biosynthesis of metal nanoparticles: a review. J Nanotechnol, 1–8. https://doi.org/10.1155/2014/510246.

  17. Chatha, S. A. S., Hussain, A. I., & Asad, R. (2014). Bioactive components and antioxidant properties of Terminalia arjuna L. extracts. Journal of Food Processing & Technology, 5, 1–5. https://doi.org/10.4172/2157-7110.1000298.

    Article  Google Scholar 

  18. Karthikeyan, K., Sarala, B. R., Gauthaman, K., Sathish, K. S., & Niranjali, D. S. (2003). Cardioprotective effect of the alcoholic extract of Terminalia arjuna bark in an in vivo model of myocardial ischaemic reperfusion injury. Life Sciences, 23, 2727–2739. https://doi.org/10.1016/S0024-3205(03)00671-4.

    Article  Google Scholar 

  19. Gupta, R., Singhal, S., Guyle, A., & Sharma, V. N. (2001). Antioxidant and hypo cholesterolaemic effects of Terminalia arjuna tree-bark powder. A randomized placebo-controlled trial. Assoc Physicians of India, 49, 231–235 https://europepmc.org/article/med/11225136.

    Google Scholar 

  20. Mandal, S., Patra, A., Samanta, A., Mandal, A., & Nandi, D. K. (2013). Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pacific Journal of Tropical Biomedicine, 3, 960–966. https://doi.org/10.1016/S2221-1691(13)60186-0.

    Article  Google Scholar 

  21. Mitra, M., Bandyopadhyay, A., Gouri Prasad, D., & Nandi, D. K. (2019). Protective role of green synthesized gold nanoparticles using Terminalia arjuna against acetaminophen induced hematological alterations in male Wistar rats. J Nanomed Nanotechnol, 10, 2. https://doi.org/10.35248/2157-7439.19.10.530.

    Article  Google Scholar 

  22. OECD guidelines for the testing of chemicals. (1976). Test guideline number 425. Acute oral toxicity study. Organisation for Economic Co-operation and Development, Paris 2008. Clin Chem Acta, 70, 19–42.

    Article  Google Scholar 

  23. Thefeld W, et al (1994) Deutsche Medizinische Wochenschrift 99:343.

  24. Schlebusch H, et al (1974)Deutsche Medizinische Wochenschrift 99:765. DOI: https://doi.org/10.1055/s-0028-1107840

  25. Walter M, Gerard H (1980) Microchemical Journal Materials 15: 231.

  26. Ohkawa, H., Phishi, N. G., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical and Bioanalytical Chemistry, 95, 351–358 351.

    Google Scholar 

  27. MestroDel, R. F., & McDonald, W. (1986). Oxidative enzymes in tissue homogenates. In R. A. Greenwald (Ed.), CRC handbook of methods for oxygen radical research (pp. 291–296). Boca Raton: CRC Press.

    Google Scholar 

  28. Luck HA. Spectrophotometric method for the estimation of catalase. Methods of enzymatic analysis. In Bergmeyer HW, Section 3.1963.

  29. Moron, M. S., Depierre, J. W., & Mannervik, B. (1979). Levels of glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta, 582(1), 67–68 https://www.researchgate.net/profile/Bengt_Mannervik/publication/281266409_Levels_of_glutathioneStransferase_activities_in_rat_lung_and_liver/links/5cb790d892851c8d22f2d6af/Levels-of-glutathione-Stransferase-activities-in-rat-lung-and-liver.pdf.

    Article  Google Scholar 

  30. Iranloye, B. O., & Bolarinwa, A. F. (2009). Effect of nicotine administration on weight and histology of some vital visceral organs in female albino rats. Nigerian Journal of Physiological Sciences, 24, 7–12. https://doi.org/10.4314/njps.v24i1.46374.

    Article  Google Scholar 

  31. Venkatesan, N., Thiyagarajan, V., Naryanan, S., Arul, A., Raja, S., Vijaya, S. G., et al. (2005). Anti-diarrhoeal potential of Asparagus racemosus wild root extracts in laboratory animals. The Journal of Pharmacy and Pharmacology, 8, 39–46 https://sites.ualberta.ca/~csps/JPPS8(1)/J.Perianayagam/asparagus.pdf.

    Google Scholar 

  32. Sallie, R., Tredger, J. M., & Willaiam, R. (1999). Drugs and the liver. Biopharmaceutics and Drug Disposition, 12, 251–259.

    Article  Google Scholar 

  33. Rosen, G. M., Singletary, W. V., Rauckman, E. J., & Killenberg, P. G. (1983). Acetaminophen hepatotoxicity. An alternative mechanism. Biochemical Pharmacology, 32, 2053–2059. https://doi.org/10.1016/0006-2952(83)90426-4.

    Article  Google Scholar 

  34. Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and flavonoid contents of whole plant extracts Torilisleptophylla L. BMC Complementary and Alternative Medicine, 12, 221 https://link.springer.com/article/10.1186/1472-6882-12-221.

    Article  Google Scholar 

  35. Scott, M. D., Lubin, B. H., Zuo, L., & Kuypers, F. A. (1991). Erythrocyte defense against hydrogen peroxide: preeminent importance of catalase. The Journal of Laboratory and Clinical Medicine, 118, 7–16. https://doi.org/10.5555/uri:pii:002221439190110S.

    Article  Google Scholar 

  36. Prakash, J., Gupta, S. K., Kochupillai, V., Singh, N., Gupta, Y. K., & Joshi, S. (2001). Chemopreventive activity of Withania somnifera in experimentally induced fibrosarcoma tumours in Swiss albino mice. Phytotherapy Resarch, 15, 240–244. https://doi.org/10.1002/ptr.779.

    Article  Google Scholar 

  37. Dash, D. K., Yeligar, V. C., Nayak, S. S., Ghosh, T., et al. (2007). Evaluation of hepatoprotective and antioxidant activity of Ichnocarpus frutescens (Linn.) R.Br. on paracetamol-induced hepatotoxicity in rats. Tropical Journal of Pharmaceutical Research, 6, 755–765. https://doi.org/10.4314/tjpr.v6i3.14656.

    Article  Google Scholar 

Download references

Funding Statement

None.

Author information

Authors and Affiliations

Authors

Contributions

MM had contributed in definition of intellectual content, literature search, data acquisition, data analysis, manuscript preparation, and manuscript editing. AB had contributed in manuscript editing. GD had contributed in manuscript editing. DKN had contributed in concept, design, manuscript editing, and statistical analysis. All authors have read and approved the manuscript for submission.

Corresponding author

Correspondence to Dilip K Nandi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

Animal Ethics approval was maintained as per the Animal Ethical Committee guidelines of Raja Narendra Lal Khan Women’s College (reference number: 14/IAEC (05)/RNLKWC/2019) and was maintained as per Committee for the Purpose of Control and Supervision of Experiments on Animal (CPCSEA), Government of India (registration no.:1905/PO/Re/S/2016/CPCSEA).

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, M., Bandyopadhyay, A., Datta, G. et al. Effective Dose of Herbal Gold Nanoparticles for Protection of Acetaminophen-Induced Hepatotoxicity in Male Albino Rats. BioNanoSci. 10, 1094–1106 (2020). https://doi.org/10.1007/s12668-020-00766-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00766-6

Keywords

Navigation