Skip to main content

Advertisement

Log in

Inactivation of Chromosomal Genes in Serratia marcescens

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Gram-negative bacterium Serratia marcescens is a well-known environmental microorganism and the accepted clinical pathogen causing nosocomial infections. It attracts more attention in recent years due to the emergence of strains with multiple drug resistance. Standard recombinant techniques are difficult to apply to S. marcescens due to the presence of numerous hydrolytic enzymes, in particular, extracellular nuclease and restriction endonuclease, which degrade transforming DNAs. We overcame this obstacle by utilizing restrictionless nuclease-deficient mutant strain S. marcescens TT392. As a proof of principal, in this genetic background, we generated a knockout strain with deletion of macAB locus using lambda red technology. The resulting mutation could be easily moved to a new genetic background by generalized phage transduction. This strategy provides a good tool for evaluation of S. marcescens pathogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mahlen, S. D. (2011). Serratia infections: from military experiments to current practice. Clinical Microbiology Reviews, 24(4), 755–791. doi:10.1128/CMR.00017-11.

    Article  Google Scholar 

  2. Benedik, M. J., & Strych, U. (1998). Serratia marcescens and its extracellular nuclease. FEMS Microbiology Letters, 165(1), 1–13.

    Article  Google Scholar 

  3. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640–6645. doi:10.1073/pnas.120163297.

    Article  Google Scholar 

  4. Porwollik, S., Santiviago, C. A., Cheng, P., Long, F., Desai, P., Fredlund, J., Srikumar, S., Silva, CA., Chu, W., Chen, X., Canals, R., Reynolds, M. M., Bogomolnaya, L., Shields, C., Cui, P., Guo, J., Zheng, Y., Endicott-Yazdani, T., Yang, H. J., Maple, A., Ragoza, Y., Blondel, C. J., Valenzuela, C., Andrews-Polymenis, H., McClelland, M. (2014). Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium. PloS One, 9(7), e99820. doi:10.1371/journal.pone.0099820.

    Article  Google Scholar 

  5. Santiviago, C. A., Reynolds, M. M., Porwollik, S., Choi, S. H., Long, F., Andrews-Polymenis, H. L., McClelland, M. (2009). Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathogens, 5(7), e1000477. doi:10.1371/journal.ppat.1000477.

    Article  Google Scholar 

  6. Reid, J. D., Stoufer, S. D., Ogrydziak, D. M. (1982). Efficient transformation of Serratia marcescens with pBR322 plasmid DNA. Gene, 17(1), 107–112.

    Article  Google Scholar 

  7. Takagi, T., & Kisumi, M. (1985). Isolation of a versatile Serratia marcescens mutant as a host and molecular cloning of the aspartase gene. Journal of Bacteriology, 161(1), 1–6.

    Google Scholar 

  8. Palomar, J., Guasch, J. F., Regue, M., Vinas, M. (1990). The effect of nuclease on transformation efficiency in Serratia marcescens. FEMS Microbiology Letters, 57(3), 255–258.

    Article  Google Scholar 

  9. Palomar, J., & Vinas, M. (1996). The effect of O-antigen on transformation efficiency in Serratia marcescens. Microbiología, 12(3), 435–438.

    Google Scholar 

  10. Wang, R. F., & Kushner, S. R. (1991). Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene, 100, 195–199.

    Article  Google Scholar 

  11. Swords, W. E. (2003). Chemical transformation of E. coli. Methods in Molecular Biology, 235, 49–53. doi:10.1385/1-59259-409-3:49.

    Google Scholar 

  12. Rossi, M. S., Paquelin, A., Ghigo, J. M., Wandersman, C. (2003). Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules. Molecular Microbiology, 48(6), 1467–1480.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a subsidy to support the program of competitive growth of Kazan Federal University and Russian Science Foundation project 16-14-10200 (L.K., T.S., and L.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia M. Bogomolnaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaletdinova, L.K., Nizamutdinova, E.K., Shirshikova, T.V. et al. Inactivation of Chromosomal Genes in Serratia marcescens . BioNanoSci. 6, 376–378 (2016). https://doi.org/10.1007/s12668-016-0249-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0249-2

Keywords

Navigation