Skip to main content
Log in

An optimization model for sizing a concentrated solar power system with thermal energy storage

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This paper aims to develop a mixed integer linear programming model for optimal sizing of a concentrated solar power system with thermal energy storage. A case study is provided to demonstrate the utility and practicality of the developed model based on a residential area in Saudi Arabia. The optimal configuration comprises a solar field area of 146,013 square meters which will generate energy at 0.115 $/kWh. The renewable system demonstrates significant environmental benefits by reducing carbon dioxide emissions by more than 96% compared to the grid. The obtained results of the proposed system are validated by benchmarking against other systems in the literature. This research contributes to the field by providing a methodological approach for optimal sizing of renewable energy systems, addressing the critical issues of environmental impact and natural resources depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Abbreviations

\(P\left(t\right)\) :

Hourly power generated by the receiver of a parabolic trough system

\({\eta }_{SF}\) :

Efficiency of solar field

\(DNI\left(t\right)\) :

Hourly direct normal irradiation

\({A}_{SF}\) :

Solar field aperture area

\({Q}_{u}\left(t\right)\) :

Net useful energy

\({\eta }_{REC}\) :

Energy losses from solar field receivers, thermal heat fluid piping circuit, and thermal energy storage system

\({\eta }_{THF}\) :

Energy losses from solar field receivers, thermal heat fluid piping circuit, and thermal energy storage system

\({\eta }_{TES}\) :

Energy losses from solar field receivers, thermal heat fluid piping circuit, and thermal energy storage system

\({E}_{CSP}\left(t\right)\) :

Hourly useful energy produced by the concentrating solar power system,

\({\eta }_{PB}\) :

Power block efficiency

LPSP :

Loss of Power Supply Probability

\({\eta }_{par}\) :

Parasitic consumption efficiency

\({\eta }_{AC}\) :

Losses during the electric conversion

\(CF\) :

Capacity factor

\({C}_{csp}\) :

Concentrating solar power plant capacity

T :

Number of hours in years

SM :

Solar multiple

CRF :

Capital recovery factor

n :

Project lifetime and i is the annual real interest rate

MILP :

Mixed integer linear programming

\({E}_{acc}\left(t\right)\) :

Hourly accumulated energy in the thermal energy storage

\(\varepsilon\) :

Maximum allowable value for loss of power supply probability

\({A}_{AV}\) :

Area of the land available excluding the areas for piping, thermal energy storage, and power blocks

\({E}_{ch}\left(t\right)\) :

Energy excess stored to the thermal energy storage during hours of high DNI

M :

Big number

z :

Binary variable for thermal energy storage charging and discharging

\({E}_{dis}\left(t\right)\) :

Thermal energy storage system is discharging energy that is equal to shortage

IC :

Capital cost of concentrated solar power system components

\(MC\) :

Annual operation and maintenance costs of the system

\(RC\) :

System replacement cost

\(SV\) :

System salvage value

\({o\&m}_{sf}\) :

Annual operation and maintenance cost of the solar field in ($/m2)

\({o\&m}_{HTS}\) :

Annual operation and maintenance cost of heat transfer system in ($/m2)

\({o\&m}_{TES}\) :

Annual operation and maintenance cost of thermal energy storage system in ($/m2)

\({o\&m}_{PB}\) :

Annual operation and maintenance cost of the power block in ($/kW)

\({IC}_{sf}\) :

Initial investment cost including owner cost, indirect cost, and the purchasing cost of solar field in ($/m2)

\({IC}_{HTS}\) :

Capital cost of the heat transfer system that represents the fluid cycle in ($/m2)

\({IC}_{TES}\) :

Capital cost of thermal energy storage system in ($/m2)

\({IC}_{PB}\) :

Capital cost of the power block in ($/kW)

\({E}_{L}\left(t\right)\) :

Hourly energy load requirement

References

  1. Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.C.B., Frieler, K., Knutti, R., Frame, D.J., Allen, M.R.: Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458(7242), 1158–1162 (2009). https://doi.org/10.1038/nature08017

    Article  CAS  PubMed  ADS  Google Scholar 

  2. EIA, U.S. Energy information administration‏, eia (2020). https://www.eia.gov/. Accessed 12 Nov 2023

  3. BP, BP Statistical Review of World Energy 2019: Statistical Review of World Energy. (2019). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf. Accessed 20 June 2023

  4. General Authority for Statistics in Saudi, General Authority for Statistics in Saudi Arabia 2017 (2017). http://stats.gov.sa. Accessed 10 June 2020

  5. Saudi Vision, 2030 (2016). https://vision2030.gov.sa/download/file/fid/417. Accessed 10 June 2021

  6. Kassem, A., Al-Haddad, K., Komljenovic, D.: Concentrated solar thermal power in Saudi Arabia: definition and simulation of alternative scenarios. Renew. Sustain. Energy Rev. 80, 75–91 (2017). https://doi.org/10.1016/J.RSER.2017.05.157

    Article  Google Scholar 

  7. Attia, A.M., Darghouth, M.N., Ghaithan, A.M., Mohammed, A.: Sizing a grid-connected photovoltaic system under economic and environmental uncertainties. Sol. Energy 265, 112123 (2023). https://doi.org/10.1016/J.SOLENER.2023.112123

    Article  ADS  Google Scholar 

  8. E.A.S.A. Council, Concentrating solar power: its potential contribution to a sustainable energy future, EASAC Policy Report. 16 (2011)

  9. IRENA (2017). http://www.irena.org. Accessed 26 July 2023

  10. Zhang, H.L., Baeyens, J., Degrève, J., Cacères, G.: Concentrated solar power plants: review and design methodology. Renew. Sustain. Energy Rev. 22, 466–481 (2013). https://doi.org/10.1016/J.RSER.2013.01.032

    Article  Google Scholar 

  11. Philibert, C.: Technology roadmap: concentrating solar power. OECD/IEA (2010)

  12. Vick, B.D., Moss, T.A.: Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match. Sol. Energy 92, 298–312 (2013). https://doi.org/10.1016/J.SOLENER.2013.03.007

    Article  ADS  Google Scholar 

  13. Montes, M.J., Abánades, A., Martínez-Val, J.M., Valdés, M.: Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Sol. Energy 83, 2165–2176 (2009). https://doi.org/10.1016/J.SOLENER.2009.08.010

    Article  CAS  ADS  Google Scholar 

  14. Sundaray, S., Kandpal, T.C.: Preliminary feasibility evaluation of solar thermal power generation in India. Int. J. Sustain. Energ. 33, 461–469 (2014). https://doi.org/10.1080/14786451.2013.770395

    Article  Google Scholar 

  15. Desai, N.B., Kedare, S.B., Bandyopadhyay, S.: Optimization of design radiation for concentrating solar thermal power plants without storage. Sol. Energy 107, 98–112 (2014). https://doi.org/10.1016/J.SOLENER.2014.05.046

    Article  ADS  Google Scholar 

  16. García-Barberena, J., Garcia, P., Sanchez, M., Blanco, M.J., Lasheras, C., Padrós, A., Arraiza, J.: Analysis of the influence of operational strategies in plant performance using SimulCET, simulation software for parabolic trough power plants. Sol. Energy 86, 53–63 (2012). https://doi.org/10.1016/J.SOLENER.2011.09.018

    Article  ADS  Google Scholar 

  17. Reddy, K.S., Kumar, K.R.: Solar collector field design and viability analysis of stand-alone parabolic trough power plants for Indian conditions. Energy Sustain. Dev. 16, 456–470 (2012). https://doi.org/10.1016/J.ESD.2012.09.003

    Article  Google Scholar 

  18. Behera, S., Dev Choudhury, N.B.: A systematic review of energy management system based on various adaptive controllers with optimization algorithm on a smart microgrid. Int. Trans. Electr. Energy Syst. 31, e13132 (2021). https://doi.org/10.1002/2050-7038.13132

    Article  Google Scholar 

  19. Behera, S., Choudhury, N.B.D.: Modelling and simulations of modified slime mould algorithm based on fuzzy PID to design an optimal battery management system in microgrid. Clean. Energy Syst. 3, 100029 (2022). https://doi.org/10.1016/J.CLES.2022.100029

    Article  Google Scholar 

  20. Giostri, A., Binotti, M., Astolfi, M., Silva, P., Macchi, E., Manzolini, G.: Comparison of different solar plants based on parabolic trough technology. Sol. Energy 86, 1208–1221 (2012). https://doi.org/10.1016/J.SOLENER.2012.01.014

    Article  CAS  ADS  Google Scholar 

  21. Zaversky, F., García-Barberena, J., Sánchez, M., Astrain, D.: Probabilistic modeling of a parabolic trough collector power plant—an uncertainty and sensitivity analysis. Sol. Energy 86, 2128–2139 (2012). https://doi.org/10.1016/J.SOLENER.2012.04.015

    Article  ADS  Google Scholar 

  22. Starke, A.R., Cardemil, J.M., Escobar, R., Colle, S.: Multi-objective optimization of hybrid CSP+PV system using genetic algorithm. Energy 147, 490–503 (2018). https://doi.org/10.1016/J.ENERGY.2017.12.116

    Article  Google Scholar 

  23. Behera, S., Dev Choudhury, N.B.: Adaptive optimal energy management in multi-distributed energy resources by using improved slime mould algorithm with considering demand side management. E-Prime Adv. Electr. Eng. Electron. Energy 3, 100108 (2023). https://doi.org/10.1016/J.PRIME.2023.100108

    Article  Google Scholar 

  24. Aguilar-Jiménez, J.A., Velázquez, N., Acuña, A., Cota, R., González, E., González, L., López, R., Islas, S.: Techno-economic analysis of a hybrid PV-CSP system with thermal energy storage applied to isolated microgrids. Sol. Energy 174, 55–65 (2018). https://doi.org/10.1016/J.SOLENER.2018.08.078

    Article  ADS  Google Scholar 

  25. Çelik, D., Meral, M.E.: A novel control strategy for grid connected distributed generation system to maximize power delivery capability. Energy 186, 115850 (2019). https://doi.org/10.1016/J.ENERGY.2019.115850

    Article  Google Scholar 

  26. Ho, C.K., Khalsa, S.S., Kolb, G.J.: Methods for probabilistic modeling of concentrating solar power plants. Sol. Energy 85, 669–675 (2011). https://doi.org/10.1016/J.SOLENER.2010.05.004

    Article  ADS  Google Scholar 

  27. LlorenteGarcía, I., Álvarez, J.L., Blanco, D.: Performance model for parabolic trough solar thermal power plants with thermal storage: comparison to operating plant data. Sol. Energy 85, 2443–2460 (2011). https://doi.org/10.1016/J.SOLENER.2011.07.002

    Article  ADS  Google Scholar 

  28. Powell, K.M., Edgar, T.F.: Modeling and control of a solar thermal power plant with thermal energy storage. Chem. Eng. Sci. 71, 138–145 (2012). https://doi.org/10.1016/J.CES.2011.12.009

    Article  CAS  Google Scholar 

  29. Reddy, V.S., Kaushik, S.C., Tyagi, S.K.: Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP). Energy 39, 258–273 (2012). https://doi.org/10.1016/J.ENERGY.2012.01.023

    Article  Google Scholar 

  30. Wagner, M., Blair, N., Dobos, A.: Detailed physical trough model for NREL’s solar advisor model (2010)

  31. Kuravi, S., Trahan, J., Goswami, D.Y., Rahman, M.M., Stefanakos, E.K.: Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 39, 285–319 (2013). https://doi.org/10.1016/J.PECS.2013.02.001

    Article  Google Scholar 

  32. Tian, Y., Zhao, C.Y.: A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538–553 (2013). https://doi.org/10.1016/J.APENERGY.2012.11.051

    Article  CAS  ADS  Google Scholar 

  33. Bousselamti, L., Cherkaoui, M.: Modelling and assessing the performance of hybrid PV-CSP plants in morocco: a parametric study. Int. J. Photoenergy (2019). https://doi.org/10.1155/2019/5783927

    Article  Google Scholar 

  34. Belgasim, B., Aldali, Y., Abdunnabi, M.J.R., Hashem, G., Hossin, K.: The potential of concentrating solar power (CSP) for electricity generation in Libya. Renew. Sustain. Energy Rev. 90, 1–15 (2018). https://doi.org/10.1016/J.RSER.2018.03.045

    Article  Google Scholar 

  35. Wang, J., Wang, J., Bi, X., Wang, X.: Performance simulation comparison for parabolic trough solar collectors in China. Int. J. Photoenergy (2016). https://doi.org/10.1155/2016/9260943

    Article  Google Scholar 

  36. Ghaithan, A., Hadidi, L., Mohammed, A.: Techno-economic assessment of concentrated solar power generation in Saudi Arabia. Renew. Energy 220, 119623 (2024). https://doi.org/10.1016/J.RENENE.2023.119623

    Article  Google Scholar 

  37. Janjai, S., Laksanaboonsong, J., Seesaard, T.: Potential application of concentrating solar power systems for the generation of electricity in Thailand. Appl. Energy 88, 4960–4967 (2011). https://doi.org/10.1016/J.APENERGY.2011.06.044

    Article  ADS  Google Scholar 

  38. Qoaider, L., Liqreina, A.: Optimization of dry cooled parabolic trough (CSP) plants for the desert regions of the Middle East and North Africa (MENA). Sol. Energy 122, 976–985 (2015). https://doi.org/10.1016/J.SOLENER.2015.10.021

    Article  ADS  Google Scholar 

  39. Agyekum, E.B., Velkin, V.I.: Optimization and techno-economic assessment of concentrated solar power (CSP) in South-Western Africa: a case study on Ghana. Sustain. Energy Technol. Assess. 40, 100763 (2020). https://doi.org/10.1016/J.SETA.2020.100763

    Article  Google Scholar 

  40. Ai, B., Yang, H., Shen, H., Energy, X.L.-R. U.: Computer-aided design of PV/wind hybrid system‏, Elsevier‏. 28, 1491–1512 (2003). https://www.sciencedirect.com/science/article/pii/S0960148103000119?casa_token=04iTt5fL3RsAAAAA:dBl628GRZ_uC01LhxRYpYwIZS9emGjKNrE9MxQNfMDcu8Z5bfhsIrQoSvBLrCHuiAXKgKwbz2PCY. Accessed 12 July 2021

  41. Ghaithan, A.M., Al-Hanbali, A., Mohammed, A., Attia, A.M., Saleh, H., Alsawafy, O.: Optimization of a solar-wind-grid powered desalination system in Saudi Arabia. Renew. Energy 178, 295–306 (2021). https://doi.org/10.1016/j.renene.2021.06.060

    Article  Google Scholar 

  42. Mohammed, A., Ghaithan, A.M., Al-Hanbali, A., Attia, A.M.: A multi-objective optimization model based on mixed integer linear programming for sizing a hybrid PV-hydrogen storage system. Int. J. Hydrogen Energy 48, 9748–9761 (2023). https://doi.org/10.1016/J.IJHYDENE.2022.12.060

    Article  CAS  Google Scholar 

  43. Ramli, M.A.M., Hiendro, A., Al-Turki, Y.A.: Techno-economic energy analysis of wind/solar hybrid system: case study for western coastal area of Saudi Arabia. Renew Energy. 91, 374–385 (2016). https://www.files/859/S0960148116300714.html. Accessed 5 July 2023

  44. Mohammed, A., Ghaithan, A., Al-Hanbali, A., Attia, A.M., Saleh, H., Alsawafy, O.: Performance evaluation and feasibility analysis of 10 kWp PV system for residential buildings in Saudi Arabia. Sustain. Energy Technol. Assess. 51, 101920 (2022). https://doi.org/10.1016/J.SETA.2021.101920

    Article  Google Scholar 

  45. Park, C.S.: Fundamentals of Engineering Economics, 3rd edn. Pearson Education, London (2013)

    Google Scholar 

  46. Artrong, R.D., Sinha, P.: Improved penalty calculations for a mixed integer branch-and-bound algorithm, Math. Program 6, 212–223 (1974). https://doi.org/10.1007/BF01580237/METRICS

    Article  Google Scholar 

  47. Attia, A.M., Al Hanbali, A., Saleh, H.H., Alsawafy, O.G., Ghaithan, A.M., Mohammed, A.: A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system. Energy 229, 120730 (2021). https://doi.org/10.1016/J.ENERGY.2021.120730

    Article  Google Scholar 

  48. CARE, K.A.: King Abdullah City for Atomic and Renewable Energy|King Abdullah City for Atomic and Renewable Energy, (2021). https://www.energy.gov.sa/en/Pages/fq.aspx. Accessed 15 Oct 2021

  49. Chennaif, M., Zahboune, H., Elhafyani, M., Zouggar, S.: Electric System Cascade Extended Analysis for optimal sizing of an autonomous hybrid CSP/PV/wind system with Battery Energy Storage System and thermal energy storage. Energy 227, 120444 (2021). https://doi.org/10.1016/J.ENERGY.2021.120444

    Article  Google Scholar 

  50. Saudi Electricity Company, (n.d.). https://www.se.com.sa/en-us/customers/Pages/TariffRates.aspx. Accessed 3 Aug 2022

  51. Kearney, D.: EIA’s outlook through 2035 from the annual energy outlook 2010, (2010). http://www.eia.doe.gov/oiaf/analysis.htm. Accessed 28 Oct 2022

  52. Kyoto Protocol—Targets for the first commitment period|UNFCCC, (n.d.). https://unfccc.int/process-and-meetings/the-kyoto-protocol/what-is-the-kyoto-protocol/kyoto-protocol-targets-for-the-first-commitment-period. Accessed 24 Oct 2022

  53. R. Renewables, Global status report, renewable energy policy network for the 21st century. (2020). https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf. Accessed 28 July 2023

  54. Wagner, S.J., Rubin, E.S.: Economic implications of thermal energy storage for concentrated solar thermal power. Renew. Energy (2012). https://doi.org/10.1016/j.renene.2012.08.013

    Article  Google Scholar 

  55. Hernández-Moro, J., Martínez-Duart, J.M.: Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution. Renew. Sustain. Energy Rev. 20, 119–132 (2013). https://doi.org/10.1016/J.RSER.2012.11.082

    Article  Google Scholar 

  56. Boukelia, T.E., Mecibah, M.S., Kumar, B.N., Reddy, K.S.: Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt. Energy 88, 292–303 (2015). https://doi.org/10.1016/J.ENERGY.2015.05.038

    Article  CAS  Google Scholar 

  57. Parrado, C., Girard, A., Simon, F., Fuentealba, E.: 2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile. Energy 94, 422–430 (2016). https://doi.org/10.1016/J.ENERGY.2015.11.015

    Article  Google Scholar 

  58. El Boujdaini, L., Ait Lahoussine Ouali, H., Mezrhab, A., Moussaoui, M.A.: Techno-economic investigation of parabolic trough solar power plant with indirect molten salt storage. In: Proceedings of 2019 International Conference of Computer Science and Renewable Energies, ICCSRE 2019. (2019). https://doi.org/10.1109/ICCSRE.2019.8807690

  59. Taylor, M., Ralon, P., Al-Zoghoul, S., Epp, B., Jochum, M.: Renewable power generation costs 2020, pp. 1–180 (2021). http://www.irena.org. Accessed 23 Nov 2023.

  60. IRENA, Renewable energy technologies: cost analysis series, concentrating solar power. (2021). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Power_Generation_Costs_2021.pdf?rev=34c22a4b244d434da0accde7de7c73d8. Accessed 27 July 2023.

Download references

Acknowledgements

The authors express their gratitude to the King Fahd University of Petroleum and Minerals (KFUPM) for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Ahmed M. Ghaithan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaithan, A.M. An optimization model for sizing a concentrated solar power system with thermal energy storage. Energy Syst (2024). https://doi.org/10.1007/s12667-024-00659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-024-00659-7

Keywords

Navigation