Skip to main content

Advertisement

Log in

A demand side management scheme for optimal power scheduling of industrial loads

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Demand side management (DSM) is beneficial for the reduction in energy consumption during peak hours. DSM in large-scale buildings modifies the load profile of these extensive consumers, playing a significant role in reducing the peak load. This research work uses genetic algorithm (GA) to optimize the load curve of a large-scale building with industrial loads. The objectives are to mitigate the energy cost and peak to average ratio (PAR). An optimal schedule is generated for the industrial user based on controllable loads. The consumers are motivated to shift their loads to off-peak hours according to the provided schedule to reduce the peak load and cost of energy. Furthermore, DSM becomes more effective by integration with the renewable energy source distributed generator (DG). Cost reduction becomes more prominent because of load sharing between utility and renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Peter, R., Ramaseshan, B., Nayar, C.V.: Renew. Energy 25(4), 511 (2002). https://doi.org/10.1016/S0960-1481(01)00080-5

    Article  Google Scholar 

  2. Palensky, P., Dietrich, D.: IEEE Trans. Ind. Inf. 7(3), 381 (2011). https://doi.org/10.1109/TII.2011.2158841

    Article  Google Scholar 

  3. Strbac, G.: Energy Policy 36(12), 4419 (2008). https://doi.org/10.1016/j.enpol.2008.09.030

    Article  Google Scholar 

  4. Alasseri, R., Tripathi, A., Rao, T.J., Sreekanth, K.: Renew. Sustain. Energy Rev. 77, 617 (2017)

    Article  Google Scholar 

  5. M. Pipattanasomporn, M. Kuzlu, S. Rahman.: IEEE Trans. Smart Grid 3(4), pp. 2166–2173 (2012). https://doi.org/10.1109/TSG.2012.2201182

  6. Ozturk, Y., Senthilkumar, D., Kumar, S., Lee, G.: IEEE Trans. Smart Grid 4(2), 694 (2013). https://doi.org/10.1109/TSG.2012.2235088

    Article  Google Scholar 

  7. Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: IEEE Trans. Smart Grid 4(3), 1391 (2013). https://doi.org/10.1109/TSG.2013.2251018

    Article  Google Scholar 

  8. Y. Zhang, P. Zeng, C. Zang, 2015 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, IEEE-CYBER 2015, pp. 734–740 (2015). https://doi.org/10.1109/CYBER.2015.7288033

  9. Lin, Y.H., Tsai, M.S.: IEEE Trans. Smart Grid 6(4), 1839 (2015). https://doi.org/10.1109/TSG.2015.2388492

    Article  Google Scholar 

  10. H.P. Khomami, M.H. Javidi, 2013 13th International Conference on Environment and Electrical Engineering, EEEIC 2013—Conference Proceedings, pp. 307–312 (2013). https://doi.org/10.1109/EEEIC-2.2013.6737927

  11. Huang, Y., Tian, H., Wang, L.: Int. J. Electr. Power Energy Syst. 73, 448 (2015). https://doi.org/10.1016/j.ijepes.2015.05.032

    Article  Google Scholar 

  12. Khalid, A., Javaid, N., Guizani, M., Alhussein, M., Aurangzeb, K., Ilahi, M.: IEEE Access 6, 19509 (2018). https://doi.org/10.1109/ACCESS.2018.2791546

    Article  Google Scholar 

  13. Basumatary, J., Singh, B.P., Gore, M.M.: ACM Int. Conf. Proc. Ser. (2018). https://doi.org/10.1145/3170521.3170524

    Article  Google Scholar 

  14. R. Rajarajeswari, K. Vijayakumar, A. Modi, Indian J. Sci. Technol. 9(43) (2016). https://doi.org/10.17485/ijst/2016/v9i43/101858

  15. Wen, Z., O’Neill, D., Maei, H.: IEEE Trans. Smart Grid 6(5), 2312 (2015). https://doi.org/10.1109/TSG.2015.2396993

    Article  Google Scholar 

  16. Saravanan, B.: Front. Energy 9(2), 211 (2015). https://doi.org/10.1007/s11708-015-0351-0

    Article  Google Scholar 

  17. Khan, Z.A., Zafar, A., Javaid, S., Aslam, S., Rahim, M.H., Javaid, N.: J. Ambient. Intell. Humaniz. Comput. 10(12), 4837 (2019). https://doi.org/10.1007/s12652-018-01169-y

    Article  Google Scholar 

  18. Jebari, K., Madiafi, M.: Int. J. Emerg. Sci. 3(4), 333 (2013)

    Google Scholar 

  19. Someya, H., Yamamura, M.: IEEJ Trans. Electron. Inf. Syst. 122(3), 363 (2002)

    Google Scholar 

  20. Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Energy Build. 129, 452 (2016)

    Article  Google Scholar 

  21. Azka. https://github.com/Azka763/-industry

  22. Logenthiran, T., Srinivasan, D., Shun, T.Z.: IEEE Trans. Smart Grid 3(3), 1244 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Ullah Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardar, A., Khan, S.U., Hassan, M.A. et al. A demand side management scheme for optimal power scheduling of industrial loads. Energy Syst 14, 335–356 (2023). https://doi.org/10.1007/s12667-022-00510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-022-00510-x

Keywords

Navigation