Skip to main content
Log in

A frequency domain design of UPFC-based damping controller through direct synthesis approach

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This paper proposes the design of damping controllers using a frequency response matching approach to enhance the small-signal stability in a unified power flow controller (UPFC) based single-machine infinite-bus (SMIB) power system. The design methodology follows the direct synthesis approach that works on the construction of a reference model, which is synthesized based on the proposed design criteria and the system dynamics. Five alternative schemes have been proposed for the investigation of the applicability of the method using two UPFC control signals (boosting amplitude modulation ratio, \(m_{b}\) and boosting phase angle, \(\delta_{e}\) independently or simultaneously. The eigenvalue analysis, time-domain simulations, Bode plots, and various performance indices reveal that the proposed controllers provide effective results for an unstable system with non-minimum phase characteristics that may be subjected to model perturbation and measurement noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shayeghi, H., Shayanfar, H.A., Jalilzadeh, S., Safari, A.: A PSO based unified power flow controller for damping of power system oscillations. Energy Convers. Manage. 50(10), 2583–2592 (2009)

    Article  Google Scholar 

  2. Kundur, P.: Power System Stability and Control. McGraw-hill, New York (1994)

    Google Scholar 

  3. Pandey, R.K., Gupta, D.K.: Knowledge domain states mapping concept for controller tuning in an interconnected power network. Int. J. Electr. Power Energy Syst. 80, 160–170 (2016)

    Article  Google Scholar 

  4. Gyugyi, L.: Unified power-flow control concept for flexible ac transmission. IEE Proc. Gener. Transm. Distrib. 139(4), 323–331 (1992)

    Article  Google Scholar 

  5. Hingorani, N.G., Gyugyi, L., El-Hawary, M.: Understanding FACTS: concepts and technology of flexible AC transmission systems. IEEE Press, New York (2000)

    Google Scholar 

  6. Hassan, L.H., Moghavvemi, M., Almurib, H.A., Muttaqi, K.M.: A coordinated design of PSSs and UPFC-based stabilizer using genetic algorithm. IEEE Trans. Ind. Appl. 50(5), 2957–2966 (2014)

    Article  Google Scholar 

  7. Nabavi-Niaki, A., Iravani, M.R.: Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies. IEEE Trans. Power Syst. 11(4), 1937–1943 (1996)

    Article  Google Scholar 

  8. Vyakaranam, B., Villaseca, F.E.: Dynamic modeling and analysis of generalized unified power flow controller. Electric Power Syst. Res. 106, 1–11 (2014)

    Article  Google Scholar 

  9. Schauder, C.D., Gyugyi, L., Lund, M.R., Hamai, D.M., Rietman, T.R., Torgerson, D.R., Edris, A.: Operation of the unified power flow controller (UPFC) under practical constraints. IEEE Trans. Power Deliv. 13(2), 630–639 (1998)

    Article  Google Scholar 

  10. Tambey, N., Kothari, M.L.: Damping of power system oscillations with unified power flow controller (UPFC). IEE Proc. Gener. Transm. Distrib. 150(2), 129–140 (2003)

    Article  Google Scholar 

  11. Mishra, S.: Neural-network-based adaptive UPFC for improving transient stability performance of power system. IEEE Trans. Neural Netw. 17(2), 461–470 (2006)

    Article  Google Scholar 

  12. Yao, W., Jiang, L., Wen, J., Wu, Q., Cheng, S.: Wide-area damping controller for power system interarea oscillations: a networked predictive control approach. IEEE Trans. Control Syst. Technol. 23(1), 27–36 (2015)

    Article  Google Scholar 

  13. Son, K.M., Park, J.K.: On the robust LQG control of TCSC for damping power system oscillations. IEEE Trans. Power Syst. 15(4), 1306–1312 (2000)

    Article  Google Scholar 

  14. Ni, H., Heydt, G.T., Mili, L.: Power system stability agents using robust wide-area control. IEEE Trans. Power Syst. 17(4), 1123–1131 (2002)

    Article  Google Scholar 

  15. Furuya, S., Irisawa, J.: A robust H∞ power system stabilizer design using reduced-order models. Int. J. Electr. Power Energy Syst. 28(1), 21–28 (2006)

    Article  Google Scholar 

  16. Dotta, D., Silva, A.S., Decker, I.C.: Wide-area measurement-based two-level control design considering signal transmission delay. IEEE Trans. Power Syst. 24(1), 208–216 (2009)

    Article  Google Scholar 

  17. Shahriar, M.S., Shafiullah, M., Rana, M.J.: Stability enhancement of PSS-UPFC installed power system by support vector regression. Electr. Eng. 100(3), 1601–1612 (2018)

    Article  Google Scholar 

  18. Tirtashi, M.R.S., Rouhani, A., Naghibi, E.: Coordinated design of output feedback PSS and UPFC controllers for enhancing dynamic stability of power system. Indian J. Sci. Technol. 7(11), 1805–1812 (2014)

    Article  Google Scholar 

  19. Radman, G., Raje, R.S.: Dynamic model for power systems with multiple FACTS controllers. Electric Power Syst. Res. 78(3), 361–371 (2008)

    Article  Google Scholar 

  20. Wang, H.: A unified model for the analysis of FACTS devices in damping power system oscillations. III. Unified power flow controller. IEEE Trans. Power Deliv. 15(3), 978–983 (2000)

    Article  Google Scholar 

  21. Yang, J., Song, P., Xu, Z., Xiao, H., Cai, H., Xie, Z.: Small-signal model of vector current-controlled MMC-UPFC. IET Gener. Transm. Distrib. 13(18), 4180–4189 (2019)

    Article  Google Scholar 

  22. Smith, K.S., Ran, L., Penman, J.: Dynamic modelling of a unified power flow controller. IEE Proc. Gener. Transm. Distrib. 144(1), 7–12 (1997)

    Article  Google Scholar 

  23. Pal, B.C.: Robust damping of interarea oscillations with unified power-flow controller. IEE Proc. Gener. Transm. Distrib. 149(6), 733–738 (2002)

    Article  Google Scholar 

  24. Guo, J., Crow, M.L., Sarangapani, J.: An improved UPFC control for oscillation damping. IEEE Trans. Power Syst. 24(1), 288–296 (2009)

    Article  Google Scholar 

  25. Al-Awami, A.T., Abdel-Magid, Y.L., Abido, M.A.: A particle-swarm-based approach of power system stability enhancement with unified power flow controller. Int. J. Electr. Power Energy Syst. 29(3), 251–259 (2007)

    Article  Google Scholar 

  26. Eslami, M., Shareef, H., Taha, M.R., Khajehzadeh, M.: Adaptive particle swarm optimization for simultaneous design of UPFC damping controllers. Int. J. Electr. Power Energy Syst. 57, 116–128 (2014)

    Article  Google Scholar 

  27. Fortes, E.V., Macedo, L.H., de Araujo, P.B., Romero, R.: A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis. Int. J> Electr. Power Energy Syst. 94, 41–56 (2018)

    Article  Google Scholar 

  28. Khodabakhshian, A., Esmaili, M.R., Bornapour, M.: Optimal coordinated design of UPFC and PSS for improving power system performance by using multi-objective water cycle algorithm. Int. J. Electr. Power Energy Syst. 83, 124–133 (2016)

    Article  Google Scholar 

  29. Khadanga, R.K., Satapathy, J.K.: A new hybrid GA–GSA algorithm for tuning damping controller parameters for a unified power flow controller. Int. J. Electr. Power Energy Syst. 73, 1060–1069 (2015)

    Article  Google Scholar 

  30. Nahak, N., Mallick, R.K.: Damping of power system oscillations by a novel DE-GWO optimized dual UPFC controller. Eng. Sci. Technol. Int. J. 20(4), 1275–1284 (2017)

    Google Scholar 

  31. Aldeen, M., Lin, L.: A new reduced-order multimachine power system stabilizer design. Electric Power Syst. Res. 52(2), 97–114 (1999)

    Article  Google Scholar 

  32. Đurić, M.B., Radojević, Z.M., Turković, E.D.: A reduced-order multimachine power system model suitable for small signal stability analysis. Int. J. Electr. Power Energy Syst. 20(5), 369–374 (1998)

    Article  Google Scholar 

  33. Anwar, M.N., Pan, S.: A frequency response model matching method for PID controller design for processes with dead-time. ISA Trans. 55, 175–187 (2015)

    Article  Google Scholar 

  34. Åström, K., Hägglund, T.: PID controllers: theory, design, and tuning, 2nd edn. Instrument Society of America, Research Triangle Park (1995)

    Google Scholar 

  35. Rahman, M.M., Ahmed, A., Galib, M., Moniruzzaman, M.: Optimal damping for generalized unified power flow controller equipped single machine infinite bus system for addressing low-frequency oscillation. ISA Transactions 116, 97–112 (2021)

    Article  Google Scholar 

  36. Devarapalli, R., Bhattacharyya, B., Sinha, N.K.: An intelligent EGWO-SCA-CS algorithm for PSS parameter tuning under system uncertainties. Int. J. Intell. Syst. 35(10), 1520–1569 (2020)

    Article  Google Scholar 

  37. Wei, D.Q., Luo, X.S.: Noise-induced chaos in single-machine infinite-bus power systems. EPL 86(5), 50008 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aprajita Salgotra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(C_{dc}\) :

Capacitance of DC link

\(D\) :

Damping coefficient

\(E^{\prime}\) :

Voltage behind the transient reactance

\(E_{q}^{\prime }\) :

Q-axis generator internal voltage

\(E_{fd}\) :

Field voltage

\(m_{b}\) :

Boosting amplitude modulation ratio

\(m_{e}\) :

Excitation amplitude modulation ratio

\(P_{m}\) :

Prime mover power

\(\delta_{e}\) :

Excitation phase angle

\(\xi\) :

Damping factor

\(\omega\) :

Rotor angular speed

\(C_{mb} \left( s \right)\) :

\(m_{b}\) Based UPFC damping controller

\(C_{\delta e} \left( s \right)\) :

\(\delta_{e}\) Based UPFC damping controller

\(\tau_{r}\) :

Time constant of non-minimum phase real pole

\(P_{e}\) :

Air-gap power

\(V_{b}\) :

Infinite-bus voltage

\(V_{dc}\) :

Voltage of dc link

\(V_{Et}\) :

Voltage at UPFC bus

\(X_{d}\) :

Direct axis synchronous reactance

\(X_{d}^{^{\prime}}\) :

Direct axis transient reactance

\(X_{e}\) :

Transmission line reactance

\(\delta_{b}\) :

Boosting phase angle

\(\Delta \omega\) :

Speed deviation

\(\omega_{b}\) :

Base speed

\(\omega_{n}\) :

Undamped natural frequency

\(X_{B}\) :

UPFC boosting transformer reactance

\(X_{E}\) :

UPFC excitation transformer reactance

\(\tau_{n}\) :

Time constant of non-minimum phase zero

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgotra, A., Pan, S. A frequency domain design of UPFC-based damping controller through direct synthesis approach. Energy Syst (2021). https://doi.org/10.1007/s12667-021-00470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-021-00470-8

Navigation