Skip to main content

Advertisement

Log in

Wind turbines new criteria optimal site matching under new capacity factor probabilistic approaches

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This paper introduces a novel methodology for determining wind turbines' optimal site matching. Our framework's key component is establishing four new probabilistic models to model wind turbines' capacity factors. First, we used the sum square of errors (SSE) and the determination coefficient (R2) to assess the accuracy of the proposed models. The developed models were then generalized to estimate wind farm capacity factors. After that, the proposed methodology's validity is tested by applying it to a known wind data site. We modeled the available wind data using Weibull distribution. Five different methods were used to determine Weibull parameters. The equivalent energy method combined with the invasive weed optimization algorithm yields the optimal values for these parameters. Finally, under the support of the presented models, the novel methodology is applied to a pool of 24 commercial turbines to choose the optimal ones. A comparison is made between the obtained capacity factor curves using the suggested models and other previous models for the selected wind turbines. When the presented models are utilized, the capacity factor of commercial wind turbines with non-ideal electrical power curves is more precisely predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PDF:

Probability density function

CDF:

Cumulative density function

SDM:

Standard deviation method

MOM:

Method of moment

EPM:

Energy pattern method

LSM:

Least square method

EEM:

Equivalent energy method

IWO:

Invasive weed optimization

RMSE:

Root mean square of errors

SSE:

Sum square of errors

f(v) :

Weibull probability density function

F(v) :

Weibull cumulative density function

k :

Weibull shape factor

c :

Weibull scale factor (m/s)

v, v avg :

Wind speed, and average wind speed, respectively, (m/s)

v i :

The measured wind speed value for the ith data point (m/s)

σ :

Wind speed standard deviation

n :

Sample size

\(\widehat{{m}_{n}}\) :

The nth origin moment

E pf :

Energy pattern factor

F(v i ) :

Weibull cumulative density function value for measured wind speed vi

Q(v) :

Probability of wind speed occurrences greater than a specific value v

P(V) :

Probability of having wind speed V within a specified interval (vi-1,vi)

ε :

Stochastic error term

P v :

Probability density function considering stochastic error

P vi :

Probability of having wind speeds for the ith bin of wind speed histogram

l :

Total number of histogram bins of wind speed

iter, iter max :

Iteration number, and maximum number of iterations, respectively

σ initial , σ final :

Iteration initial and final standard deviation, respectively

o :

Nonlinear modulation index

σ iter :

Iteration standard deviation

C.f. :

Wind turbine capacity factor

u(v) :

The proper probability density function describing wind data

P f (v) :

Wind turbine generated electrical power at wind speed v (MW)

P rated :

Rated wind turbine power (MW)

v in , v r , v o :

Wind turbine cut-in speed, rated speed, and cut-out speed, respectively, (m/s)

c s, k s :

Site scale and shape factors, respectively

c t , k t :

Wind turbine scale and shape factors, respectively

a 0 , a 1 , a 2 :

Fitting models first, second, and third term coefficients

R 2 :

Determination coefficient

c R :

The ratio between site and wind turbine scale factors

k R :

The ratio between site and wind turbine shape factors

∆c s :

Rate of scale factor (m/s)

∆k s :

Rate of shape factor

∆c R :

Relative rate of scale factor

∆k R :

Relative rate of shape factor

h, h i :

Hub-height and initial hub-height, respectively (m)

c i , k i :

Site wind speed scale and shape factors, respectively, at height hi

N :

Number of interconnected turbines at the site

k ti , c ti :

Shape and scale factors of wind turbine number i, respectively

zi :

Wake effect of turbine number i

P i-rated :

Rated power of wind turbine number i (MW)

c ti-e :

Effective scaling factor

References

  1. Global Wind Energy Council (GWEC).: Global wind report 2019 [Online]. https://gwec.net/global-wind-report-2019. Accessed 10 June 2020

  2. Khaloie, H., Mollahassani-Pour, M., Moghaddam, A.A.: Optimal behavior of a hybrid power producer in day-ahead and intraday markets: a bi-objective CVaR-based approach. IEEE Trans. Sustain. Energy 12(2), 931–943 (2021). https://doi.org/10.1109/TSTE.2020.3026066

    Article  Google Scholar 

  3. Khaloie, H., Moghaddam, A.A., Hatziargyriou, N., Contreras, J.: Risk-constrained self-scheduling of a hybrid power plant considering interval-based intraday demand response exchange market prices. J. Clean. Prod. 282, 125344 (2021). https://doi.org/10.1016/j.jclepro.2020.125344

    Article  Google Scholar 

  4. Bidaoui, H., El Abbassi, I., El Bouardi, A., Darcherif, A.: Wind speed data analysis using Weibull and Rayleigh distribution functions, case study: five cities Northern Morocco. Proc. Manuf. 32, 786–793 (2019). https://doi.org/10.1016/j.promfg.2019.02.286

    Article  Google Scholar 

  5. Mazzeo, D., Oliveti, G., Labonia, E.: Estimation of wind speed probability density function using a mixture of two truncated normal distributions. Renew. Energy 115, 1260–1280 (2018). https://doi.org/10.1016/j.renene.2017.09.043

    Article  Google Scholar 

  6. Khalfallah, M.G., Koliub, A.M.: Suggestions for improving wind turbines power curves. Desalination 209(1–3), 221–229 (2007). https://doi.org/10.1016/j.desal.2007.04.031

    Article  Google Scholar 

  7. Albadi, M.H., El-Saadany, E.F.: Wind turbines capacity factor modeling—a novel approach. IEEE Trans. Power Syst. 24(3), 1637–1638 (2009). https://doi.org/10.1109/TPWRS.2009.2023274

    Article  Google Scholar 

  8. Jangamshetti, S.H., Rau, V.G.: Site matching of wind turbine generators: a case study. IEEE Trans. Energy Convers. 14, 1537–1543 (1999). https://doi.org/10.1109/60.815102

    Article  Google Scholar 

  9. Diyoke, C.: A new approximate capacity factor method for matching wind turbines to a site: case study of Humber region, UK. Int J Energy Environ Eng 10, 451–462 (2019). https://doi.org/10.1007/s40095-019-00320-5

    Article  Google Scholar 

  10. Lydia, M., Selvakumar, A.I., Kumar, S.S., Kumar, G.E.P.: Advanced algorithms for wind turbine power curve modelling. IEEE Trans. Sustain. Energy 4(3), 827–835 (2013). https://doi.org/10.1109/TSTE.2013.2247641

    Article  Google Scholar 

  11. Ouarda, T.B.M.J., Charron, C.: On the mixture of wind speed distribution in a Nordic region. Energy Convers. Manage. 174, 33–44 (2018). https://doi.org/10.1016/j.enconman.2018.08.007

    Article  Google Scholar 

  12. Mazzeo, D., Oliveti, G., Marsico, A.: A correction to the unimodal and bimodal truncated normal distributions for a more accurate representation of extreme and calm wind speeds. Int. J. Energy Res. 43, 7908–7941 (2019). https://doi.org/10.1002/er.4735

    Article  Google Scholar 

  13. Jung, C., Schindler, D.: Sensitivity analysis of the system of wind speed distributions. Energy Convers. Manag. 177, 376–384 (2018). https://doi.org/10.1016/j.enconman.2018.09.078

    Article  Google Scholar 

  14. Ali, S., Lee, S.-M., Jang, C.-M.: Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island–Incheon South Korea. Renew. Energy 123, 652–663 (2018). https://doi.org/10.1016/j.renene.2018.02.087

    Article  Google Scholar 

  15. Aukitino, T., Khan, M.G.M., Ahmed, M.R.: Wind energy resource assessment for Kiribati with a comparison of different methods of determining Weibull parameters. Energy Convers. Manag. 151, 641–660 (2017). https://doi.org/10.1016/j.enconman.2017.09.027

    Article  Google Scholar 

  16. Bokde, N., Feijóo, A., Villanueva, D.: Wind turbine power curves based on the weibull cumulative distribution function. Appl. Sci. 8, 1757 (2018). https://doi.org/10.3390/app8101757

    Article  Google Scholar 

  17. Omar, O.A.M., Ahmed, H.M., Elbarkouky, R.A.: Commercial wind turbines modeling using single and composite cumulative probability density functions. Int. J. Electr. Comput. Eng. 11(1), 47–56 (2021). https://doi.org/10.11591/ijece.v11i1.pp47-56

    Article  Google Scholar 

  18. Carrillo, C., Montaño, A.F.O., Cidrás, J., Díaz-Dorado, E.D.: Review of power curve modelling for wind turbines. Renew. Sustain. Energy Rev. 21, 572–581 (2013). https://doi.org/10.1016/j.rser.2013.01.012

    Article  Google Scholar 

  19. Staffell, I., Pfenninger, S.: Using bias-corrected reanalysis to simulate current and future wind power output. Energy 114, 1224–1239 (2016). https://doi.org/10.1016/j.energy.2016.08.068

    Article  Google Scholar 

  20. Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al.: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24(14), 3624–3648 (2011). https://doi.org/10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  21. Molod, A., Takacs, L., Suarez, M., Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8(5), 1339–1356 (2015). https://doi.org/10.5194/gmd-8-1339-2015

    Article  Google Scholar 

  22. Lileo, S., Petrik, O.: Investigation on the use of NCEP/NCAR, MERRA and NCEP/ CFSR reanalysis data in wind resource analysis. In Wind Energy Conf. Exhib (EWEC), pp. 181–185 (2011)

  23. Gualtieri, G.: Improving investigation of wind turbine optimal site matching through the self-organizing maps. Energy Convers. Manag. 143, 295–311 (2017). https://doi.org/10.1016/j.enconman.2017.04.017

    Article  Google Scholar 

  24. El-Shimy, M.: Wind energy conversion systems: reliability prospective. Encycl. Energy Eng. Technol. 2, 2184–2206 (2014)

    Google Scholar 

  25. Aghbalou, N., Charki, A., Elazzouzi, S.R., Reklaoui, K.: A probabilistic assessment approach for wind turbine-site matching. Int. J. Electr. Power Energy Syst. 103, 497–510 (2018). https://doi.org/10.1016/j.ijepes.2018.06.018

    Article  Google Scholar 

  26. Sedaghat, A., Alkhatib, F., Eilaghi, A., Sabati, M., Borvayeh, L., Mostafaeipour, A.: A new strategy for wind turbine selection using optimization based on rated wind speed. Energy Proc. 160, 582–589 (2019). https://doi.org/10.1016/j.egypro.2019.02.209

    Article  Google Scholar 

  27. Sedaghat, A., Mostafaeipour, A., Rezaei, M., Jahangiri, M., Mehrabi, A.: A new semi-empirical wind turbine capacity factor for maximizing annual electricity and hydrogen production. Int. J. Hydrogen Energy 45(32), 15888–15903 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.028

    Article  Google Scholar 

  28. Azad, A.K., Rasul, M.G., Yusaf, T.: Statistical diagnosis of the best Weibull methods for wind power assessment for agricultural applications. Energies 7, 3056–3085 (2014). https://doi.org/10.3390/en7053056

    Article  Google Scholar 

  29. Saeed, M.K., Salam, A., Rehman, A.U., Saeed, M.A.: Comparison of six different methods of Weibull distribution for wind power assessment: a case study for a site in the Northern region of Pakistan. Sustain. Energy Technol. Assess. 36, 100541 (2019)

    Google Scholar 

  30. Mehrabian, A.R., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1(4), 355–366 (2006). https://doi.org/10.1016/j.ecoinf.2006.07.003

    Article  Google Scholar 

  31. Albadi, M.H., El-Saadany, E.F.: Optimum turbine-site matching. Energy 35, 3593–3602 (2010). https://doi.org/10.1016/j.energy.2010.04.049

    Article  Google Scholar 

  32. Johnson, G.L.: Wind energy systems. Prentice Hall, New York (2001)

    Google Scholar 

  33. Tao, S., Xu, Q., Feijóo, A., Kuenzel, S., Bokde, N.: Integrated wind farm power curve and power curve distribution function considering the wake effect and terrain gradient. Energies 12(13), 2482 (2019). https://doi.org/10.3390/en12132482

    Article  Google Scholar 

  34. Dong, X., Li, J., Gao, D., Zheng, K.: Wind speed modeling for cascade clusters of wind turbines part 1: the cascade clusters of wind turbines. Energy 205, 118097 (2020). https://doi.org/10.1016/j.energy.2020.118097

    Article  Google Scholar 

  35. Mortensen, N.G., Hansen, J.C., Badger, J., Jørgensen, B.H., Hasager, C.B., Paulsen, U.S., Hansen, O.F., Enevoldsen, K., Youssef, L.G., Said, U.S., Moussa, A.A.E.-S., Mahmoud, M.A., Yousef, A.E.S., Awad, A.M., Ahmed, M.A.-E.R., Sayed, M.A.M., Korany, M.H., Tarad, M.A.-E.B.: Wind atlas for Egypt: measurements, micro-, and mesoscale modeling. Eur. Wind Energy Conf. Exhib. (EWEC) 1, 136–145 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othman A. M. Omar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Wind Atlas of Egypt at specified sites [35]

Region

Site ID

Site name

Site data

Lat. \(({\mathrm{N}}^{\mathrm{o}})\)

Long. \(({\mathrm{E}}^{\mathrm{o}})\)

\({h}_{i}\) (m)

\({c}_{i}\) (m/s)

\({k}_{i}\)

Avg. (m/s)

North Coast

1

Sidi Barani (62,301)

31.47

25.87

24.5

7

2.16

6.2

2

El-Mathany

31.35

26.88

24.5

6.4

2.33

5.7

3

Ras El-Hekma

31.25

27.86

24.5

7.2

2.23

6.4

4

El-Galaa

31.08

26.7

24.5

6.7

2.41

5.9

5

Alexandria (62,318)

31.2

29.92

10

5.2

2.42

4.6

6

Port Said

31.27

32.3

24.5

5.3

2.32

4.7

7

El- Arish (62,337)

31.13

33.8

8.5

3

1.44

2.8

Gulf of Aqaba

8

Nuweiba

28.97

34.65

24.5

6.2

2.58

5.6

9

Nabq

28.04

34.43

24.5

7.7

2.04

6.8

Gulf of Suez

10

Katamaya

29.92

31.82

24.5

6

2.66

5.4

11

El-Suez (62450)

29.97

32.55

10

6.2

3.17

5.5

12

Ras Sedr

29.6

32.67

24.5

8.5

3.06

7.6

13

Abu Darag NW

29.47

32.45

47.5

9.6

3.34

8.6

14

Abu Darag

29.47

32.45

24.5

10.1

3.5

9.1

15

Zafarana M7

29.22

30.82

47.5

11.1

3.57

10

16

Zafarana

29.12

32.66

24.5

10.2

3.19

9.1

17

Saint Paul

28.78

32.78

24.5

9.4

3.25

8.5

18

Ras Ghareb

28.35

33.08

24.5

11

3.4

9.9

19

Gulf of El-Zayt NW

28.00

33.30

24.5

11.8

3.7

10.7

20

Gulf of El-Zayt

27.77

33.61

24.5

11.5

3.29

10.3

Red Sea

21

Hurghada WETC

27.26

33.81

24.5

7.6

2.23

6.7

22

Hurghada (62,463)

27.18

33.8

10

7.6

2.66

6.7

23

Kossier (62465)

26.43

34.07

10

5.1

2.03

4.6

24

Kossier

26.11

34.27

24.5

6.5

2.32

5.8

Western Desert

25

Farafra (62423)

27.06

27.97

10

3.9

1.79

3.5

26

Kharga

25.44

30.56

24.5

7.4

2.57

6.6

27

Dakhla South

23.99

29.19

24.5

7.3

3.31

6.6

28

Shark El—Ouinat

22.72

28.11

24.5

7.2

3.29

6.5

29

Asswan (62412)

24.09

32.9

10

5.4

2.61

4.8

30

Abu Simbel

24.08

32.9

24.5

6.4

2.76

5.4

Appendix B: Commercial wind turbines data [17]

Turbine ID

Turbine name

Turbine data

Rating (KW)

\(v_{in}\)(m/s)

\(v_{r}\)(m/s)

\(v_{out}\)(m/s)

\(c_{t}\) (m/s)

\(k_{t}\)

1

Vestas (V80)

2000

4.0

16.0

25.0

9.6420951

4.5786415

2

Siemens (S82)

2300

4.0

13.5

25.0

10

4.1929594

3

Repower (RE82)

2050

3.5

14.5

25.0

9.4212791

4.557548

4

Nordex (N90)

2300

3.0

12.0

25.0

9.9995814

4.1613744

5

Siemens (S107)

3600

3.0

13.0

25.0

9.6739173

4.6331647

6

Vestas (V164)

6995

4.0

13.0

25.0

9.4674353

4.3835995

7

An-Bonus (1000/54)

1000

3.0

15.0

25.0

10.1682039

3.51399081

8

Enercon (E53)

810

3.0

12.0

34.0

9.11191916

3.50978311

9

Leitwind (LTW77–1000)

1000

3.0

11.0

25.0

7.91437529

3.75144762

10

Leitwind (LTW80–850)

850

3.0

10.0

25.0

7.21305636

5.08338348

11

Leitwind (LTW90–1000)

1000

3.0

9

25.0

6.86532481

4.77729061

12

Vestas (V47)

660

4.0

15.0

25.0

9.66602728

4.04811810

13

Wind Tech Windane (DWT34)

400

5.5

14

25.0

10.9005567

5.07686715

14

Enercon (E40/5.4)

500

2.5

12.0

25.0

9.61051239

5.08680599

15

Turbowinds (T400–34)

400

3.0

14.0

25.0

9.96184430

5.44584277

16

Vestas (V39)

500

4.0

15.0

25.0

10.1185051

3.95460524

17

Wespa (500/47)

500

4.0

14.5

25.0

8.47204202

5.30386838

18

Windflow (45–500)

500

4.5

11.5

25.0

9.44318401

3.75527729

19

Leitwind (LTW42–250)

250

3.0

9.0

25.0

7.3715829

4.0697689

20

Windmaster (Hmzwm 300/25)

300

5.0

15.0

25.0

11.9992984

3.56446705

21

Vergnet (C275/30)

275

3.5

12.0

25.0

9.44229627

4.73408344

22

Vestas (V27)

225

3.0

15.0

25.0

9.71250815

3.93238423

23

Wespa (200/31)

200

4.0

13.5

25.0

9.4369866

5.2200093

24

Norwin (29-STALL-225)

225

4.0

14.0

25.0

11.004852

4.0108782

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, O.A.M., Ahmed, H.M. & Elbarkouky, R.A. Wind turbines new criteria optimal site matching under new capacity factor probabilistic approaches. Energy Syst 14, 419–444 (2023). https://doi.org/10.1007/s12667-021-00463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-021-00463-7

Keywords

Navigation