Skip to main content
Log in

Comparative analysis of PID and fractional order PID controllers in automatic generation control process with coordinated control of TCSC

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The present work focuses on the power oscillation damping of an interconnected multi-area multi-source power system depicting the load fluctuations issue in reference frame of automatic generation control (AGC). In real-time, the load profile characteristic is un-deterministic and uncertain in nature. Therefore, a diverse perspective of area load profiles such as step load disturbance, pulse load perturbation, sinusoidal load pattern, random load pattern and uniformly distributed random load are taken into study. The investigated power system model is a two-area system, classified by reheat thermal, hydro and gas generating units, lumped together in a control area with the impacts of governor deadband and generation rate constraint. AGC performance work is propagated by proportional-integral-derivative (PID) controller with filter and, then, fractional order PID (FPID) controller. Also, a fast-acting thyristor controlled series compensator (TCSC) device modified by the Taylor theorem is incorporated as a damping controller to pursuit its significances in AGC tool. In an additional work, a lead-lag compensator block is also incorporated to the basic TCSC controller to show its impact on AGC. Sensitivity analysis of both the basic and the advanced TCSC damping controller is investigated under loading and model parameter variations. The design problem i.e., the constrained optimization problem is tuned by employing the quasi-oppositional harmony search (QOHS) algorithm. From the mathematical point of view, calculations eigenvalues, performance indices and transient parameters, and sensitivity analysis are presented in support of the designed TCSC-QOHS controller. Graphically, the simulation results are presented. The obtained simulation results showed that the realization of TCSC in series with the tie-line with the FPID controller can be an effective approach for the AGC tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source TCSC equipped power system model [14]

Fig. 2

source TCSC equipped interconnected power system model [14]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AGC:

Automatic generation control

FACTS:

Flexible AC transmission system

GA:

Genetic algorithm

GDB:

Governor deadband

GRC:

Generation rate constraint

HSA:

Harmony search (HS) algorithm

LFC:

Load frequency control

PID:

Proportional-integral-derivative

PLP:

Pulse load perturbation

SLP:

Step load perturbation

SMES:

Superconducting magnetic energy storage

TCPS:

Thyristor controlled phase shifter

TCR:

Thyristor controlled reactor

TCSC:

Thyristor controlled series compensator

TLBO:

Teaching learning based optimization

QOBL:

Quasi-oppositional based learning

QOHS:

Quasi-oppositional harmony search

\(ACE\) :

Area control error

\(b_{g}\) :

Gas turbine constant of valve position (s)

\(B\) :

Frequency bias constant (p.u.MW/Hz)

\(c_{g}\) :

Gas turbine valve position

\(D\) :

System damping of area (p.u.MW/Hz)

\(f\) :

Nominal system frequency (Hz)

\(H\) :

Inertia constant (s)

\(i\) :

Subscript, referred as ith area

\(K_{p}\) :

Power system gain constant (Hz/p.u.MW)

\(K_{r}\) :

Reheat gain constant

\(P_{{rt}}\) :

Rated capacity of the area (MW)

\(PF_{{th}}\), \(PF_{{hyd}}\), \(PF_{g}\) :

Participation factors of thermal, hydro and gas generating units, respectively

\(R_{{th}}\), \(R_{{hyd}}\), \(R_{g}\) :

Governor speed regulation parameters of thermal, hydro and gas generating units, respectively, (Hz/p.u.MW)

\(T_{{12}}\) :

Synchronizing coefficient

\(T_{{cd}}\) :

Gas turbine compressor discharge volume time- constant (s)

\(T_{{cr}}\) :

Gas turbine combustion reaction time delay (s)

\(T_{f}\) :

Gas turbine fuel time-constant (s)

\(T_{{gh}}\) :

Hydro turbine speed governor time-constant (s)

\(T_{p}\) :

Power system time-constant (s)

\(T_{r}\) :

Reheat time-constant (s)

\(T_{{rh}}\) :

Hydro turbine speed governor transient droop time-constant (s)

\(T_{{rs}}\) :

Hydro turbine speed governor reset time (s)

\(T_{{sg}}\) :

Governor time-constant of steam turbine (s)

\(T_{t}\) :

Steam turbine time-constant (s)

\(T_{w}\) :

Nominal starting time of water in penstock (s)

\(X_{g}\) :

Lead time-constant of gas turbine speed governor (s)

\(Y_{g}\) :

Lag time-constant of gas turbine speed governor (s)

\(\Delta f_{{}}\) :

Incremental frequency deviation (Hz)

\(\Delta P_{{tie}}\) :

Incremental tie-line power flow deviation (p.u.MW)

References

  1. Kundur, P.: Power system stability and control. Tata McGraw Hill, New Delhi (2008)

    Google Scholar 

  2. Wen, S., Wang, Y., Tang, Y., Xu, Y., Li, P., Zhao, T.: Real-time identification of power fluctuations based on lstm recurrent neural network: a case study on Singapore power system. IEEE Trans. Ind. Inf. 15(9), 5266–5275 (2019)

    Article  Google Scholar 

  3. Tripathy, S.C., Balasubramanian, R., Nair, P.S.C.: Effect of superconducting magnetic energy storage on automatic generation control considering governor deadband and boiler dynamics. IEEE Trans. Power Syst. 7(3), 1266–1273 (1992)

    Article  Google Scholar 

  4. Ngamroo, I., Mitani, Y., Tsuji, K.: Application of SMES coordinated with solid-state phase shifter to load frequency control. IEEE Trans. Appl. Supercond. 9(2), 322–325 (1999)

    Article  Google Scholar 

  5. Chun-Feng, L., Chun-Chang, L., Chi-Jui, W.: Effect of battery energy storage system on load frequency control considering governor deadband and generation rate constraint. IEEE Trans. Energy Convers. 10(3), 555–561 (1995)

    Article  Google Scholar 

  6. Wang, Y., Xu, Y., Tang, Y.: Distributed aggregation control of grid-interactive smart buildings for power system frequency support. Appl Energy 251, 113371 (2019)

    Article  Google Scholar 

  7. Bhatt, P., Ghoshal, S.P., Roy, R.: Load frequency stabilization by coordinated control of thyristor controlled phase shifters and superconducting magnetic energy storage for three types of interconnected two-area power systems. Int. J. Electr. Power Energy Syst. 32, 1111–1124 (2010)

    Article  Google Scholar 

  8. Bhatt, P., Roy, R., Ghoshal, S.P.: Comparative performance evaluation of SMES-SMES, TCPS-SMES and SSSC-SMES controllers in automatic generation control for a two-area hydro-hydro system. Int. J. Electr. Power Energy Syst. 33, 1585–1597 (2011)

    Article  Google Scholar 

  9. Farahani, M., Ganjefar, S.: Solving LFC problem in an interconnected power system using superconducting magnetic energy storage. Physica C 487, 60–66 (2013)

    Article  Google Scholar 

  10. Parmar, K.P.S.: Load frequency control of multi-source power system with redox flow batteries: an analysis. Int. J. Comput. Appl. 88(8), 46–52 (2014)

    Google Scholar 

  11. Padhan, S., Sahu, R.K., Panda, S.: Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units. Ain Shams Eng. J. 5, 759–774 (2014)

    Article  Google Scholar 

  12. Deepak, M., Abraham, R.J.: Load following in a deregulated power system with thyristor controlled series compensator. Int. J. Electr. Power Energy Syst. 65, 136–145 (2015)

    Article  Google Scholar 

  13. Roy, A., Dutta, S., Roy, P.K.: Automatic generation control by SMES-SMES controllers of two-area hydro-hydro system, in: 2009. In: Proceedings of 2014 1st International Conference on Non Conventional Energy (ICONCE), 2014, pp. 302–307.

  14. Zare, K., Hagh, M.T., Morsali, J.: Effective oscillation damping of an interconnected multi-source power system with automatic generation control and TCSC. Int. J. Electr. Power Energy Syst. 65, 220–230 (2015)

    Article  Google Scholar 

  15. Jaleeli, N., Ewart, D.N., Fink, L.H.: Understanding automatic generation control. IEEE Trans. Power Syst. 7(3), 1106–1122 (1992)

    Article  Google Scholar 

  16. Golpîra, H., Bevrani, H., Golpîra, H.: Application of GA optimization for automatic generation control design in an interconnected power system. Energy Convers. Manag. 52, 2247–2255 (2011)

    Article  Google Scholar 

  17. Ramesh, S., Krishnan, A.: Modified genetic algorithm based load frequency controller for interconnected power system. Int. J. Electr. Power Eng. 3(1), 26–30 (2009)

    Google Scholar 

  18. Parmar, K.P.S., Majhi, S., Kothari, D.P.: Load frequency control of a realistic power system with multi-source power generation. Int. J. Electr. Power Energy Syst. 42, 426–433 (2012)

    Article  Google Scholar 

  19. Farahani, M., Ganjefar, S., Alizadeh, M.: PID controller adjustment using chaotic optimization algorithm for multi-area load frequency control. IET Control Theory Appl. 6(13), 1984–1992 (2012)

    Article  MathSciNet  Google Scholar 

  20. Shabani, H., Vahidi, B., Ebrahimpour, M.: A robust PID controller based on imperialist competitive algorithm for load-frequency control of power system. ISA Trans. 52, 88–98 (2013)

    Article  Google Scholar 

  21. Naidu, K., Mokhlis, H., Bakar, A.H.A., Terzija, V., Illias, H.A.: Application of firefly algorithm with online wavelet filter in automatic generation control of an interconnected reheat thermal power system. Int. J. Electr. Power Energy Syst. 63, 401–413 (2014)

    Article  Google Scholar 

  22. Mohanty, B., Panda, S., Hota, P.K.: Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system. Int. J. Electr. Power Energy Syst. 54, 77–85 (2014)

    Article  Google Scholar 

  23. Sahu, R.K., Gorripotu, T.S., Panda, S.: Automatic generation control of multi-area power systems with diverse energy sources using teaching learning based optimization algorithm. Int. J. Eng. Sci. Tech. 19(1), 113–134 (2016)

    Google Scholar 

  24. Barisal, A.K.: Comparative performance analysis of teaching learning based optimization for automatic load frequency control of multi-source power systems. Int. J. Electr. Power Energy Syst. 66, 67–77 (2015)

    Article  Google Scholar 

  25. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulations 76(2), 60–68 (2001)

    Article  Google Scholar 

  26. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math Comput. 188, 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Omran, M.G.H., Mahdavi, M.: Global-best harmony search. Appl. Math Comput. 198, 643–656 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Pan, Q.K., Suganthan, P.N., Tasgetiren, M.F., Liang, J.J.: A self-adaptive global best harmony search algorithm for continuous optimization problems. Appl. Math Comput. 216, 830–848 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Valian, E., Tavakoli, S., Mohanna, S.: An intelligent global harmony search approach to continuous optimization problems. Appl. Math Comput. 232, 670–684 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Pan, Q., Suganthan, P.N., Liang, J.J., Tasgetiren, M.F.: A local-best harmony search algorithm with dynamic sub-harmony memories for lot-streaming flow shop scheduling problem. Expert Syst. Appl. 38, 3252–3259 (2011)

    Article  Google Scholar 

  31. Chatterjee, A., Ghoshal, S.P., Mukherjee, V.: Solution of combined economic and emission dispatch problems of power systems by an opposition-based harmony search algorithm. Int. J. Electr. Power Energy Syst. 39, 9–20 (2012)

    Article  Google Scholar 

  32. Banerjee, A., Mukherjee, V., Ghoshal, S.P.: An opposition-based harmony search algorithm for engineering optimization problems. Ain Shams Eng. J. 5(1), 85–101 (2014)

    Article  Google Scholar 

  33. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-oppositional differential evolution. In: Proceeding of the IEEE Congress on Evolutionary Computation, pp 2229–2236 (2007)

  34. Hingorani, N.G., Gyugyi, L.: Understanding FACTS: concepts and technology of flexible AC transmission systems. IEEE Press, New York (2000)

    Google Scholar 

  35. Finney, R.L., Thomas, G.B., Weir, M.D.: Calculus and Analytic Geometry. Addison Wesley (1992)

    MATH  Google Scholar 

  36. Parmar, K.P.S., Majhi, S., Kothari, D.P.: LFC of an interconnected power system with thyristor controlled phase shifter in the tie line. Int. J. Comput. Appl. 41, 27–30 (2012)

    Google Scholar 

  37. Gozde, H., Taplamacioglu, M.C., Kocaarslan, I.: Comparative performance analysis of artificial bee colony algorithm in automatic generation control for interconnected reheat thermal power system. Electr. Power Syst. Res. 42, 167–178 (2012)

    Article  Google Scholar 

  38. Panda, S., Mohanty, B., Hota, P.K.: Hybrid BFOA-PSO algorithm for automatic generation control of linear and non-linear interconnected power systems. Appl. Soft Comput. 13, 4718–4730 (2013)

    Article  Google Scholar 

  39. Padhan, D.G., Majhi, S.: A new control scheme for PID load frequency controller of single-area and multi-area power systems. ISA Trans. 52, 242–251 (2013)

    Article  Google Scholar 

  40. Kumar, N., Tyagi, B., Kumar, V.: Application of fractional order PID controller for AGC under deregulated environment. Int. J. Automat. Comput. 15(1), 84–93 (2018)

    Article  Google Scholar 

  41. Ogata, K.: Modern Control Engineering, 2nd edn. Printice Hall International (1995)

    MATH  Google Scholar 

  42. Shiva, C.K., Mukherjee, V.: A novel quasi-oppositional harmony search algorithm for automatic generation control of power system. Appl. Soft Comput. 35, 749–765 (2015)

    Article  Google Scholar 

  43. Shiva, C.K., Shankar, G., Mukherjee, V.: Automatic generation control of power system using a novel quasi-oppositional harmony search algorithm. Int. J. Electr. Power Energy Syst. 73, 787–804 (2015)

    Article  Google Scholar 

  44. Shiva, C.K., Mukherjee, V.: Comparative performance assessment of a novel quasi-oppositional harmony search algorithm and internal model control method for automatic generation control of power systems. Proc. IET Gener. Transm. Distrib. 9(11), 1137–1150 (2015)

    Article  Google Scholar 

  45. Pradhan, P.C., Sahu, R.K., Panda, S.: Firefly algorithm optimized fuzzy PID controller for AGC of multi-area multi-source power systems with UPFC and SMES. Int. J. Eng. Sci. Tech. 19(1), 338–354 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Kumar Shiva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A.1 Nominal data for the studied two-area multi-source power system model [36]

System configuration:

\(f = 60\) Hz,\(P_{{r1}} = P_{{r2}} = 2000\) MW, \({\text{Total}}\,\,{\text{area}}\,\,{\text{load}} = 1740\) MW, Base rating = 2000 MW, Initial loading = 87%

For reheat turbine unit

\(T_{{sg}} = 0.06\) s,\(T_{t} = 0.3\) s,\(K_{r} = 0.3,\) \(T_{r} = 10.2\) s, \(N_{1} = 0.8\), \(N_{2} = \frac{{ - 0.2}}{\pi }\),\(R_{{th}} = 2.4\) Hz/p.u.MW, \(B_{1} = B_{2} = 0.4312\) p.u.MW/Hz, \(PF_{{th}} = 0.543478\), \(H = 5\) MWs/MVA, \(D = 0.0145\) p.u.MW/Hz,\(K_{{ps1}} = K_{{ps2}} = 68.9655\) Hz/p.u.MW, \(T_{{ps1}} = T_{{ps2}} = 11.49\) s

For hydro turbine unit

\(T_{{gh}} = 0.2\) s,\(T_{{rs}} = 4.9\) s,\(T_{{rh}} = 28.749\) s,\(T_{w} = 1.1\) s,\(R_{{hyd}} = 2.4\) Hz/p.u.MW,\(PF_{{hyd}} = 0.326084\)

For gas turbine unit

\(B_{g} = 0.049\) s,\(C_{g} = 1\),\(X_{g} = 0.6\) s,\(Y_{g} = 1.1\) s,\(T_{{cr}} = 0.01\) s,\(T_{f} = 0.239\) s,\(T_{{cd}} = 0.2\) s,\(R_{g} = 2.4\) Hz/p.u.MW, \(PF_{g} = 0.130438\)

A.2 Determination of power system parameters at different loading conditions

Rated capacity \(P_{r} = 2000\) MW, nominal load \(\Delta P_{L} = 1740\) MW, nominal frequency \(f = 60\) Hz, inertia constant \(H = 5\) MWs/MVA, regulation parameter \(R = 2.4\) Hz/p.u.MW. Assuming a linear load frequency dependence relationship:

Frequency dependency parameter \(D = \frac{{\partial P_{L} }}{{\partial f}} = \frac{{1740}}{{60}} = 29\) MW/Hz.

D in per unit (= D in p.u.MW/Hz/\(P_{r} )\) = 29/2000 = 0.0145 p.u.MW/Hz.

Power system parameters: \(T_{{ps}} = \frac{{2H}}{{\partial f \times D}} = \frac{{2 \times 5}}{{60 \times 0.0145}} = 11.49\) s.

\(K_{{ps}} = \frac{1}{D} = \frac{1}{{0.0145}} = 68.96\) Hz/p.u.MW.

A.3 Data for TCSC controller [14]

With TCSC-IPSO [14]:

\(K_{{TCSC}} = 0.1812\), \(T_{{TCSC}} = 0.0060\) s

With TCSC-QOHS [Proposed]:

\(K_{{TCSC}} = 2.9984\), \(T_{{TCSC}} = 0.0590\) s

With advanced TCSC-QOHS [Proposed]:

\(K_{{TCSC}} = 0.0598\), \(T_{{TCSC}} = 1.3958\) s, \(T_{1} = 1.1658\) s, \(T_{3} = 0.9993\) s

A.4 Flowchart of QOHS algorithm [44]

See Fig. 15.

Fig. 15
figure 15

Flowchart of the QOHS algorithm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigya, Shiva, C.K., Vedik, B. et al. Comparative analysis of PID and fractional order PID controllers in automatic generation control process with coordinated control of TCSC. Energy Syst 14, 133–170 (2023). https://doi.org/10.1007/s12667-021-00457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-021-00457-5

Keywords

Navigation