Skip to main content
Log in

Influence of curtain plates on the aerodynamic performance of an elliptical bladed Savonius rotor (S-rotor)

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The S-rotor is a drag driven wind turbine, having lesser performance coefficients. Its various geometric and aerodynamic parameters have been optimized to improve its performance. Several rotor profiles and augmentation methods have also been progressed to improve its performance further. The augmentation method reduced the negative drag generated in the S-rotor. Very recently, the elliptical bladed profile has shown higher performance than the other profiles. Hence, in this study, the elliptical bladed profile has been considered along with the curtain plates augmenter before the rotor blades. The 2D unsteady numerical analysis is conducted through the SST k–ω turbulence model. The simulations are also performed for the elliptical profile without the curtain plates for direct comparison. From the 2D unsteady results, it was found that the elliptical bladed profile with curtains plates has higher aerodynamic performance (CDavg = 2.60 and CLavg = 0.65) than the elliptical profile without curtains (CDavg = 1.43 and CLavg = 0.95). Hence, there is an improvement of CDavg by 81.81% in the elliptical profile with curtain plates than the profile without the curtain plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Rotor area [m2]

C PZ :

Pressure coefficient –

H :

Rotor height [m]

k :

Turbulence kinetic energy [m2/s2]

R :

Rotor radius [m]

TSR :

Tip speed ratio –

V :

Free stream wind speed [m/s]

β :

Curtain angle [o]

γ :

Curtain angle [o]

ε :

Energy dissipation rate [m2/s2]

θ :

Cutting angle of ellipse [o]

ρ :

Air density [kg/m3]

ω s :

Rotor rotational speed [rad/s

References

  1. Amano, R.S.: Review of wind turbine research in 21st century. ASME J. Energy Resour. Technol. 139(5), 050801 (2017)

    Article  Google Scholar 

  2. Dossena, V., Persico, G., Paradiso, B., Battisti, L., Dell’Anna, S., Brighenti, A., Benini, E.: An experimental study of the aerodynamics and performance of a vertical axis wind turbine in a confined and unconfined environment. ASME J. Energy Resour. Technol. 137(5), 051207 (2015)

    Article  Google Scholar 

  3. Wong, K.H., Chong, W.T., Sukiman, N.L., Poh, S.C., Shiah, Y.C., Wang, C.T.: Performance enhancements on vertical axis wind turbines using flow augmentation systems: a review. Renew. Sustain. Energy Rev. 73(February), 904–921 (2017)

    Article  Google Scholar 

  4. Damak, A., Driss, Z., Abid, M.S.: Experimental investigation of helical Savonius rotor with a twist of 180. Renew. Energy 52, 136–142 (2013)

    Article  Google Scholar 

  5. GWEC, Global Wind Energy Council report, 2017

  6. WWEA, World wind energy association, 2019

  7. Roy, S., Das, R., Saha, U.K.: An inverse method for optimization of geometric parameters of a Savonius style wind turbine. Energy Convers. Manage. 155, 116–127 (2018)

    Article  Google Scholar 

  8. Abraham, J.P., Plourde, B.D., Mowry, G.S., Minkowycz, W.J., Sparrow, E.M.: Summary of Savonius wind turbine development and future applications for small-scale power generation. J. Renew. Sustain. Energy 4(4), 042703 (2012)

    Article  Google Scholar 

  9. N. Alom, and U.K. Saha, Four decades of research into the augmentation techniques of Savonius wind turbine rotor, ASME J. Energy Resour. Technol., Vol. 140, No. 5, 2018, pp: 050801-1-050801-14.

  10. N. Alom, R. Das, and U.K. Saha, Optimization of aerodynamic parameters of an elliptical-Bladed Savonius wind rotor using multi-objective genetic algorithm, Paper No. GTIndia2019-2346, ASME Gas Turbine India Conference, 2019, December 05 – 06, Chennai, India.

  11. Sharma, S., Sharma, R.K.: CFD investigation to quantify the effect of layered multiple miniature blades on the performance of Savonius rotor. Energy Convers. Manag. 144, 275–285 (2010)

    Article  Google Scholar 

  12. N. Alom, R. Das, and U. K. Saha, A Differential Evolution-Based Inverse Method to Optimize Blade Configurations in Elliptical-Bladed Savonius Wind Turbines, Paper No. GTIndia2019-2352, ASME Gas Turbine India Conference, 2019, December 05 – 06, Chennai, India.

  13. Chan, C.M., Bai, H.L., He, D.Q.: Blade shape optimization of the Savonius wind turbine using a genetic algorithm. Appl. Energy 213, 148–157 (2018)

    Article  Google Scholar 

  14. S.J. Savonius, Rotor adapted to be driven by wind or flowing water, U.S. patent No. 1697574 (1, 1929), p. 4.

  15. Simonds, M.H., Bodek, A.: performance test of a Savonius rotor (brace research institute”, McGill University. Quebec, Canada (1964)

    Google Scholar 

  16. Kacprzak, K., Liskiewicz, G., Sobczak, K.: Numerical investigation of conventional and modified Savonius wind turbines. Renew. Energy 60, 578–585 (2013)

    Article  Google Scholar 

  17. A.H. Benesh, Wind turbine system using a vertical axis Savonius type rotor, in U.S. patent US5494407 A (November 15, 1988)

  18. A.H. Benesh, Wind turbine system using a Savonius type rotor, U.S. patent 4838757 (July 10, 1989)

  19. A.H Benesh, The Benesh wind turbine, in Eleventh ASME Wind Energy Symposium, 1992.

  20. Grinspan, A.S., Saha, U.K., Mahanta, P.: Experimental investigation of twisted bladed savonius wind turbine rotor. Int. Energy J. 5(1), 1–9 (2004)

    Google Scholar 

  21. A. Banerjee, A., S. Roy, P. Mukherjee, and U. K. Saha, Unsteady flow analysis around an elliptic-bladed Savonius-style wind turbine. In: Proceedings of the ASME 2014 gas turbine india conference GTINDIA2014, ASME, pp. 1–7

  22. N. Alom, S.C. Kolaparthi, S.C. Gadde, and U.K. Saha, Aerodynamic design optimization of elliptical-bladed Savonius-style wind turbine by numerical simulations, Volume 6: Ocean Space Utilization; Ocean Renewable Energy, ASME 2016, p. V006T09A009.

  23. L. Song, Z. X. Yang, R. T. Deng, and X. G. Yang, Performance and structure optimization for a new type of vertical axis wind turbine. In: Proceedings of the 2013 international conference on advanced mechatronic systems, IEEE, pp. 687–692

  24. S. Roy, Aerodynamic performance evaluation of a novel Savonius-style wind turbine through unsteady simulations and wind tunnel experiments,” PhD thesis, Department of Mechanical Engineering, IIT Guwahati, 2014, India.

  25. Reupke, P., Probert, S.D.: Slatted-blade Savonius wind-rotors. Appl. Energy 40(1), 65–75 (1991)

    Article  Google Scholar 

  26. Tabassum, S.A., Probert, S.D.: Vertical-axis wind turbine: a modified design. Appl. Energy 28(1), 59–67 (1987)

    Article  Google Scholar 

  27. Z. Zhao, Y. Zheng, X. Xu, W. Liu, and D. Zhou, Optimum design configuration of helical Savonius rotor via numerical study. In: Proceedings of the ASME 2009 fluids engineering division summer meeting (FEDSM2009) (ASME, Colorado, USA)

  28. Chong, W.T., Pan, K.C., Poh, S.C., Fazlizan, A., Oon, C.S., Badarudin, A., Nik-ghazali, N.: Performance investigation of a power augmented vertical axis wind turbine for urban high-rise application. Renew. Energy 51, 388–397 (2013)

    Article  Google Scholar 

  29. Deda Altan B. Performance investigation of Savonius wind rotor with curtaining method. PhD. thesis in mechanical engineering. Graduate school of natural and applied sciences. Pamukkale university, Denizli, Turkey. 2006; pp. 147 [in Turkish].

  30. Alom, N., Saha, U.K.: Performance evaluation of vent-augmented elliptical-bladed Savonius rotors by numerical simulation and wind tunnel experiments. Energy 152, 277–290 (2018)

    Article  Google Scholar 

  31. Chen, L., Chen, J., Zhang, Z.: Review of the Savonius rotor’s blade profile and its performance. J. Renew. Sustain. Energy 10(1), 013306 (2018)

    Article  MathSciNet  Google Scholar 

  32. N. Alom, and U. K. Saha, Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes, ASME J. Solar Energy Eng. 141(3):2019, pp: 030801-1–050801-15

  33. Saha, U.K., Thotla, S., Maity, D.: Optimum design configuration of Savonius rotor through wind tunnel experiments. J. Wind Eng. Ind. Aerodyn. 96(8–9), 1359–1375 (2008)

    Article  Google Scholar 

  34. Irabu, K., Roy, J.N.: Study of direct force measurement and characteristics on blades of Savonius rotor at static state. Exp. Therm. Fluid Sci. 35(4), 653–659 (2011)

    Article  Google Scholar 

  35. Jaohindy, P., McTavish, S., Garde, F., Bastide, A.: An analysis of the transient forces acting on Savonius rotors with different aspect ratios. Renew. Energy 55, 286–295 (2011)

    Article  Google Scholar 

  36. Alom, N., Saha, U.K.: Examining the aerodynamic drag and lift characteristics of a newly developed elliptical- bladed Savonius rotor. ASME J. Energy Resources Technol. 141(5), 051201 (2019)

    Article  Google Scholar 

  37. Alom, N., Borah, B., Saha, U.K.: An insight into the drag and lift characteristics of modified Bach and Benesh profiles of Savonius rotor. Energy Proc. 144, 50–56 (2018)

    Article  Google Scholar 

  38. Altan, B.D., Atilgan, M.: The use of a curtain design to increase the performance level of a Savonius wind rotors. Renew. Energy 35, 821–829 (2010)

    Article  Google Scholar 

  39. Nasef, M.H., El-Askary, W.A., AbdEL-hamid, A.A., Gad, H.E.: Evaluation of Savonius rotor performance: Static and dynamic studies. J. Wind Eng. Ind. Aerodyn. 123, 1–11 (2013)

    Article  Google Scholar 

  40. N. Alom, and U. K. Saha, Arriving at the optimum overlap ratio for an elliptical-bladed Savonius rotor. In: Proceedings of ASME Turbo Expo 2017 Turbine technical conference and exposition, June 26–30, Charlotte, North Carolina, USA

  41. Emmanuel, B., Jun, W.: Numerical study of a six-bladed Savonius wind turbine. ASME J. Sol. Energy Eng. 133(4), 44503 (2011)

    Article  Google Scholar 

  42. C. Song, Y. Zheng, Z. Zhao, Y. Zhang, C. Li, and H. Jiang, Investigation of meshing strategies and turbulence models of computational fluid dynamics simulations of vertical axis wind turbines. J. Renew. Sustain. Energy, 7, 2015, pp. 0–19.

  43. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids 4(7), 1510–1520 (1992)

    Article  MathSciNet  Google Scholar 

  44. Shaheen, M., El-Sayed, M., Abdallah, S.: Numerical study of two-bucket Savonius wind turbine cluster. J. Wind Eng. Ind. Aerodyn. 137, 78–89 (2015)

    Article  Google Scholar 

  45. Lee, J.H., Lee, Y.T., Lim, H.C.: Effect of twist angle on the performance of Savonius wind turbine. Renew. Energy 89, 231–244 (2016)

    Article  Google Scholar 

  46. J. L. Menet, N. Bourabaa, Increase in the Savonius rotors efficiency via a parametric investigation. In: European wind energy conference, 22–25 November, 2004, London, UK

  47. J. V. Akwa, G. Alves Da Silva Junior, and A.P. Petry, Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics, Renewable Energy, 38(1), 2012, pp. 141–149

  48. Ferrari, G., Federici, D., Schito, P., Inzoli, F., Mereu, R.: CFD study of Savonius wind turbine: 3D model validation and parametric analysis. Renew. Energy 105, 722–734 (2017)

    Article  Google Scholar 

  49. Fujisawa, N.: On the torque mechanism of Savonius rotors. J. Wind Eng. Ind. Aerodyn. 40(3), 277–292 (1992)

    Article  Google Scholar 

  50. Manwell, J.F., Mcgowan, J.G., Rogers, A.L.: Wind energy explained: theory, design and application. Wiley, Hoboken (2009)

    Book  Google Scholar 

  51. G. L. Johnson, Wind energy systems, Kansas State University, 2006, Manhattan, USA, ISBN 10:0139577548/ISBN 13: 9780139577543

  52. Roy, S., Ducoin, A.: Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine. Energy Convers. Manage. 121, 281–296 (2016)

    Article  Google Scholar 

Download references

Funding

The author has not received any funds from any funding agencies for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Alom.

Ethics declarations

Conflicts of interest

The author has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alom, N. Influence of curtain plates on the aerodynamic performance of an elliptical bladed Savonius rotor (S-rotor). Energy Syst 13, 265–280 (2022). https://doi.org/10.1007/s12667-021-00428-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-021-00428-w

Keywords

Navigation