Skip to main content

Advertisement

Log in

Home energy management system (HEMS): concept, architecture, infrastructure, challenges and energy management schemes

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

With the rapid advancements in technologies like smart grid, network communication, information infrastructures, bidirectional communication medium’s, energy conservation methodologies and diverse techniques, Home area networks (HANs) have undergone a revolutionary change pertaining to various areas of power consumption domains like electricity usage patterns, energy conservation at consumption premises, etc. Under a robust smart grid paradigm, modern home equipped with HEMS contributes significantly towards efficiency improvement, economizing energy usage, reliability, as well as conserving energy for distributed systems. The objective of the paper is to present a comprehensive review covering the various technical and conceptual aspects of efficient power management at home front. A systematic review proposed by several researchers till date in this area is considered. The study focuses on the concepts, technical background, architecture and infrastructure along with various schemes as well as goals including various issues and challenges faced with HEMS systems. The research paper proposes a novel methodology for improvising the home design architecture by incorporating the concept of green building in order to reduce the energy consumption done by a resident at their home front. The concept of HEM systems or SHEMS is not just about proposing new models to save energy, power management, or making energy efficient appliances to be used at home front but also about creating awareness among the consumers and motivating them to participate in the activities related to power conservation in active manner. The study have shown the, impact of various schemes over the peak load reduction with Optimization based residential energy management (OREM) technique showing the reduction in power consumption showing a cut down of about 35% in the overall electricity bill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pau, G., Collotta, M., Ruano, A., Qin, J.: Smart home energy management. Energies 10(12), 382 (2017)

    Article  Google Scholar 

  2. Aman, S., Simmhan, Y., Prasanna, V.K.: Energy management systems: state of the art and emerging trends. IEEE Commun. Mag. 51(1), 114–119 (2013)

    Article  Google Scholar 

  3. Zipperer, A., Aloise-Young, P.A., Suryanarayanan, S., Roche, R., Earle, L., Christensen, D., Bauleo, P., Zimmerle, D.: Electric energy management in the smart home: perspectives on enabling technologies and consumer behavior. Proc. IEEE 101(11), 2397–2408 (2013)

    Article  Google Scholar 

  4. Asare-Bediako, B., Ribeiro, P.F., Kling, W.L.: Integrated energy optimization with smart home energy management systems. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), pp. 1–8 (2012)

  5. Fischer, C.: Feedback on household electricity consumption: a tool for saving energy? Energy Effic. 1(1), 79–104 (2008)

    Article  MathSciNet  Google Scholar 

  6. Gellings, C.W.: Power to the people. IEEE Power Energy Mag. 9(5), 52–63 (2011)

    Article  Google Scholar 

  7. Moen, R.L.: Solar energy management system. In: 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, pp. 917–919 (1979)

  8. Capehart, B.L., Muth, E.J., Storin, M.O.: Minimizing residential electrical energy costs using microcomputer energy management systems. Comput. Ind. Eng. 6(4), 261–269 (1982)

    Article  Google Scholar 

  9. Rahman, S., Bhatnagar, R.: Computerized energy management systems—why and how. J. Microcomput. Appl. 9(4), 261–270 (1986)

    Article  Google Scholar 

  10. Wacks, K.P.: Utility load management using home automation. IEEE Trans. Consum. Electron. 37(2), 168–174 (1991)

    Article  Google Scholar 

  11. Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre, B., Mynatt, E., Starner, T.E., Newstetter, W.: The aware home: a living laboratory for ubiquitous computing research. In: International Workshop on Cooperative Buildings, pp. 191–198. Springer, Berlin (1999)

  12. Kushiro, N., Suzuki, S., Nakata, M., Takahara, H., Inoue, M.: Integrated residential gateway controller for home energy management system. IEEE Trans. Consum. Electron. 49(3), 629–636 (2003)

    Article  Google Scholar 

  13. Inoue, M., Higuma, T., Ito, Y., Kushiro, N., Kubota, H.: Network architecture for home energy management system. IEEE Trans. Consum. Electron. 49(3), 606–613 (2003)

    Article  Google Scholar 

  14. Das, S.K., Roy, N., Roy, A.: Context-aware resource management in multi-inhabitant smart homes: A framework based on Nash H-learning. Pervasive Mob. Comput. 2(4), 372–404 (2006)

    Article  Google Scholar 

  15. Ghent, B.A. U.S. Patent 7,110,832. Washington, DC: U.S. Patent and Trademark Office (2006)

  16. Han, J., Choi, C.S., Lee, I.: More efficient home energy management system based on ZigBee communication and infrared remote controls. IEEE Trans. Consum. Electron. 57(1), 85–89 (2011)

    Article  Google Scholar 

  17. Pipattanasomporn, M., Kuzlu, M., Rahman, S.: An algorithm for intelligent home energy management and demand response analysis. IEEE Trans. Smart Grid 3(4), 2166–2173 (2012)

    Article  Google Scholar 

  18. Di Giorgio, A., Pimpinella, L.: An event driven smart home controller enabling consumer economic saving and automated demand side management. Appl. Energy 96, 92–103 (2012)

    Article  Google Scholar 

  19. Squartini, S., Boaro, M., De Angelis, F., Fuselli, D., Piazza, F.: Optimization algorithms for home energy resource scheduling in presence of data uncertainty. In: 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), pp. 323–328. IEEE (2013)

  20. Boynuegri, A.R., Yagcitekin, B., Baysal, M., Karakas, A., Uzunoglu, M.: Energy management algorithm for smart home with renewable energy sources. In:  4th International Conference on Power Engineering, Energy and Electrical Drives, pp. 1753–1758. IEEE (2013)

  21. Dittawit, K., Aagesen, F.A.: On adaptable smart home energy systems. In: 2013 Australasian Universities Power Engineering Conference (AUPEC), pp. 1–6. IEEE (2013)

  22. Zhou, S., Wu, Z., Li, J., Zhang, X.P.: Real-time energy control approach for smart home energy management system. Elect. Power Compon. Syst. 42(3–4), 315–326 (2014)

    Article  Google Scholar 

  23. Missaoui, R., Joumaa, H., Ploix, S., Bacha, S.: Managing energy smart homes according to energy prices: analysis of a building energy management system. Energy Build. 71, 155–167 (2014)

    Article  Google Scholar 

  24. Shahgoshtasbi, D., Jamshidi, M.M.: A new intelligent neuro–fuzzy paradigm for energy-efficient homes. IEEE Syst. J. 8(2), 664–673 (2014)

    Article  Google Scholar 

  25. Zhang, Y., Zeng, P., Zang, C.: Optimization algorithm for home energy management system based on artificial bee colony in smart grid. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 734–740. IEEE (2015)

  26. Hong, Y.Y., Chen, C.R., Yang, H.W.: Implementation of demand response in home energy management system using immune clonal selection algorithm. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 3377–3382. IEEE (2015)

  27. Ge, G.E.: BrillionTM Connected Appliances. General Electric. http://www.geappliances.com, http://www.geappliances.com/ge/connected-appliances/ (2018). Accessed 18 Aug 2019

  28. Honda. Honda Smart Home US. http://www.hondasmarthome.com. http://www.hondasmarthome.com/tagged/hems (2018). Accessed 18 Aug 2019

  29. Lujano-Rojas, J.M., Monteiro, C., Dufo-López, R., Bernal-Agustín, J.L.: Optimum residential load management strategy for real time pricing (RTP) demand response programs. Energy Policy 45, 671–679 (2012)

    Article  Google Scholar 

  30. Ha Pham, T.T., Clastres, C., Wurtz, F., Bacha, S., Zamaï, E.: Optimal household energy management and economic analysis: from sizing to operation scheduling. (2008). http://halshs.archives-ouvertes.fr/halshs-00323581/en/

  31. Ha, D.L., Ploix, S., Zamai, E., Jacomino, M.: Tabu search for the optimization of household energy consumption. In: IRI, pp. 86–92 (2006)

  32. Ha, D.L., de Lamotte, F.F., Huynh, Q.H.: Real-time dynamic multilevel optimization for demand-side load management. In: 2007 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 945-949. IEEE (2007)

  33. Yiyun, T., Can, L., Lin, C., Lin, L.: Research on vehicle-to-grid technology. In: 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, pp. 1013–1016. IEEE (2011)

  34. Kempton, W., Tomić, J.: Vehicle-to-grid power fundamentals: Calculating capacity and net revenue. J. Power Sources 144(1), 268–279 (2005)

    Article  Google Scholar 

  35. Al-Ali, A.R., El-Hag, A., Bahadiri, M., Harbaji, M., El Haj, Y.A.: Smart home renewable energy management system. Energy Procedia 12, 120–126 (2011)

    Article  Google Scholar 

  36. Son, Y.S., Pulkkinen, T., Moon, K.D., Kim, C.: Home energy management system based on power line communication. IEEE Trans. Consum. Electron. 56(3), 1380–1386 (2010)

    Article  Google Scholar 

  37. Kahrobaee, S., Rajabzadeh, R.A., Soh, L.K., Asgarpoor, S.: A multiagent modeling and investigation of smart homes with power generation, storage, and trading features. IEEE Trans. Smart Grid 4(2), 659–668 (2012)

    Article  Google Scholar 

  38. Tsui, K.M., Chan, S.C.: Demand response optimization for smart home scheduling under real-time pricing. IEEE Trans. Smart Grid 3(4), 1812–1821 (2012)

    Article  Google Scholar 

  39. Han, J., Choi, C. S., Park, W. K., & Lee, I. : Green home energy management system through comparison of energy usage between the same kinds of home appliances. In: 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), pp. 1–4, IEEE (2011)

  40. Son, Y.S., Pulkkinen, T., Moon, K.D., Kim, C.: Home energy management system based on power line communication. IEEE Trans. Consum. Electron. 56(3), 1380–1386 (2010)

    Article  Google Scholar 

  41. Han, J., Choi, C.S., Lee, I.: More efficient home energy management system based on ZigBee communication and infrared remote controls. IEEE Trans. Consum. Electron. 57(1), 85–89 (2011)

    Article  Google Scholar 

  42. Lee, J. I., Choi, C. S., Park, W. K., Han, J. S., & Lee, I. W.: A study on the use cases of the smart grid home energy management system. In ICTC 2011 IEEE pp. 746-750(2011)

  43. Kuzlu, M., Pipattanasomporn, M., Rahman, S.: Hardware demonstration of a home energy management system for demand response applications. IEEE Trans. Smart Grid 3(4), 1704–1711 (2012)

    Article  Google Scholar 

  44. Dimeas, A., Drenkard, S., Hatziargyriou, N., Karnouskos, S., Kok, K., Ringelstein, J., Weidlich, A.: Smart houses in the smart grid: developing an interactive network. IEEE Electrif. Mag. 2(1), 81–93 (2014)

    Article  Google Scholar 

  45. Mesarić, P., Krajcar, S.: Home demand side management integrated with electric vehicles and renewable energy sources. Energy Build. 108, 1–9 (2015)

    Article  Google Scholar 

  46. Missaoui, R., Joumaa, H., Ploix, S., Bacha, S.: Managing energy smart homes according to energy prices: analysis of a building energy management system. Energy Build. 71, 155–167 (2014)

    Article  Google Scholar 

  47. Asare-Bediako, B., Kling, W.L., Ribeiro, P.F.: Home energy management systems: evolution, trends and frameworks. In: 2012 47th International Universities Power Engineering Conference (UPEC), pp. 1–5. IEEE (2012)

  48. Al-Ali, A.R., El-Hag, A., Bahadiri, M., Harbaji, M., El Haj, Y.A.: Smart home renewable energy management system. Energy Procedia 12, 120–126 (2011)

    Article  Google Scholar 

  49. Son, Y.S., Pulkkinen, T., Moon, K.D., Kim, C.: Home energy management system based on power line communication. IEEE Trans. Consum. Electron. 56(3), 1380–1386 (2010)

    Article  Google Scholar 

  50. Van Dam, S.S., Bakker, C.A., Buiter, J.C.: Do home energy management systems make sense? Assessing their overall lifecycle impact. Energy Policy 63, 398–407 (2013)

    Article  Google Scholar 

  51. Yanyu, Z., Peng, Z., Chuanzhi, Z.: Review of home energy management system in smart grid. Power Syst. Protect. Control 42(18), 144–154 (2014)

    Google Scholar 

  52. Han, D.M., Lim, J.H.: Design and implementation of smart home energy management systems based on zigbee. IEEE Trans. Consum. Electron. 56(3), 1417–1425 (2010)

    Article  Google Scholar 

  53. Inoue, M., Higuma, T., Ito, Y., Kushiro, N., Kubota, H.: Network architecture for home energy management system. IEEE Trans. Consum. Electron. 49(3), 606–613 (2003)

    Article  Google Scholar 

  54. Erol-Kantarci, M., Mouftah, H.T.: Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Trans. Smart Grid 2(2), 314–325 (2011)

    Article  Google Scholar 

  55. Hu, Q., Li, F.: Hardware design of smart home energy management system with dynamic price response. IEEE Trans. Smart Grid 4(4), 1878–1887 (2013)

    Article  Google Scholar 

  56. IEA: Renewables information. International Energy Agency 2014. https://www.oecd-ilibrary.org/energy/renewables-information-2014_renew-2014-en. (2014). Accessed 18 Feb 2019

  57. GENI: Renewable energy potential of small island states. Global Energy Network Institute. https://www.geni.org/globalenergy/library/technical-articles/generation/small-island-nations/renewable-energy-potential-of-small-island-states/Renewable%20Energy%20Potential%20of%20Small%20Island%20States1.pdf (2008). Accessed 18 Feb 2019

  58. Vijayapriya, T., Kothari, D.P.: Smart grid: an overview. Smart Grid Renew. Energy 2(04), 305–311 (2011)

    Article  Google Scholar 

  59. The Reegle Portal. https://www.reeep.org/policy-and-regulation-overview-country. Accessed 18 Aug 2019

  60. Dena—German energy agency. Bruttostromerzeugung in Deutschland. https://www.auswaertiges-amt.de/blob/610620/5d9bfec0ab35695b9db548d10c94e57d/the-german-energiewende-data.pdf; https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Erzeugung/Tabellen/bruttostromerzeugung.html (2012). Accessed 20 Aug 2019

  61. IRENA: Feed-in tariff specifications, features, amendments, and current and future challenges in Cyprus. Int. Renew Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Events/2013/Jan/12/Country-Case-Study—Cyprus—George-Partasides.pdf?la=en&hash=750CFE0334B2E484D2ABF80BE2358F0F02FD8A4F. (2013)

  62. The reegle portal. https://www.reeep.org/china-2014. Accessed 20 Aug 2019

  63. Alvarez, R., Araque, J., Sierra, J.: A novel smart home energy management system: architecture and optimization model. Ind. J. Sci. Technol. 10(26), 1–8 (2017)

    Article  Google Scholar 

  64. Tiptipakorn, S., Lee, W.J.: A residential consumer-centered load control strategy in real-time electricity pricing environment. In: 2007 39th North American Power Symposium, pp. 505-510. IEEE (2000)

  65. Yu, T., Kim, D.S., Son, S.Y.: Optimization of scheduling for home appliances in conjunction with renewable and energy storage resources. Int. J. Smart Home 7(4), 261–272 (2013)

    Google Scholar 

  66. Zhu, Z., Lambotharan, S., Chin, W.H., Fan, Z.: Overview of demand management in smart grid and enabling wireless communication technologies. IEEE Wirel. Commun. 19(3), 48–56 (2012)

    Article  Google Scholar 

  67. Flick, T., Morehouse, J.: Securing the smart grid: next generation power grid security. Elsevier, USA (2010)

    Google Scholar 

  68. Ancillotti, E., Bruno, R., Conti, M.: The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Comput. Commun. 36(17–18), 1665–1697 (2013)

    Article  Google Scholar 

  69. Denmark Wind Power Output. https://www.wsj.com/articles/denmarks-wind-power-output-rises-to-record-in-first-half-1409750563. Accessed 22 Aug 2019)

  70. Basit, A., Hansen, A.D., Altin, M., Sørensen, P., Gamst, M.: Wind power integration into the automatic generation control of power systems with large-scale wind power. J. Eng. 10, 538–545 (2014)

    Article  Google Scholar 

  71. REN21 Renewables 2011: global status report. https://www.ren21.net/wp-content/uploads/2019/05/GSR2011_Full-Report_English.pdf. (2011). Accessed 25 Aug 2019

  72. The World Wind Energy Association. Half-year Report. WWEA. https://wwindea.org/blog/2016/10/10/wwea-half-year-report-worldwind-wind-capacity-reached-456-gw/. (2014). Accessed 26 Aug 2019

  73. Raadal, H.L., Gagnon, L., Modahl, I.S., Hanssen, O.J.: Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power. Renew. Sustain. Energy Rev. 15(7), 3417–3422 (2011)

    Article  Google Scholar 

  74. Torriti, J.: Price-based demand side management: assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy. Energy 44(1), 576–583 (2012)

    Article  Google Scholar 

  75. Asadinejad, A., Tomsovic, K.: Optimal use of incentive and price based demand response to reduce costs and price volatility. Electr. Power Syst. Res. 144, 215–223 (2017)

    Article  Google Scholar 

  76. Erol-Kantarci, M., Mouftah, H.T.: Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Trans. Smart Grid 2(2), 314–325 (2011)

    Article  Google Scholar 

  77. Han, J., Choi, C.S., Lee, I.: More efficient home energy management system based on ZigBee communication and infrared remote controls. IEEE Trans. Consum. Electron. 57(1), 85–89 (2011)

    Article  Google Scholar 

  78. Mahmood, A., Ullah, M.N., Razzaq, S., Basit, A., Mustafa, U., Naeem, M., Javaid, N.: A new scheme for demand side management in future smart grid networks. Procedia Comput. Sci. 32, 477–484 (2014)

    Article  Google Scholar 

  79. Erol-Kantarci, M., Mouftah, H.T.: Wireless sensor networks for domestic energy management in smart grids. In:  2010 25th Biennial Symposium on Communications, pp. 63–66. IEEE (2010)

  80. Pedrasa, M.A.A., Spooner, T.D., MacGill, I.F.: Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans. Smart Grid 1(2), 134–143 (2010)

    Article  Google Scholar 

  81. Lujano-Rojas, J.M., Monteiro, C., Dufo-López, R., Bernal-Agustín, J.L.: Optimum residential load management strategy for real time pricing (RTP) demand response programs. Energy Policy 45, 671–679 (2012)

    Article  Google Scholar 

  82. Rezaee, Y., Sedaghati, A.: Optimal operation strategy of power systems in the presence of smart grids and electric vehicles. Majlesi J. Mechatr. Syst. 6(4), 31–40 (2018)

    Google Scholar 

  83. Zhou, Y., Chen, Y., Xu, G., Zhang, Q., Krundel, L.: Home energy management with PSO in smart grid. In: 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1666–1670. IEEE (2014)

  84. Patel, K., Khosla, A.: Home energy management systems in future smart grid networks: a systematic review. In: 2015 1st International Conference on Next Generation Computing Technologies (NGCT), pp. 479–483. IEEE (2015)

  85. NRC: Survey of household energy use 2007. Technical report. Natural Resources Canada. http://oee.nrcan.gc.ca/Publications/statistics/sheu07/pdf/sheu07.pdf. (2010). Accessed 26 Aug 2019

  86. NRC: Energy use data handbook 1990–2010. http://oee.nrcan.gc.ca/publications/statistics/handbook2010/handbook2013.pdf. Accessed 27 Aug 2019

  87. Molderink, A., Bakker, V., Bosman, M.G., Hurink, J.L., Smit, G.J.: Management and control of domestic smart grid technology. IEEE Trans. Smart Grid 1(2), 109–119 (2010)

    Article  Google Scholar 

  88. Clastres, C., Pham, T.H., Wurtz, F., Bacha, S.: Ancillary services and optimal household energy management with photovoltaic production. Energy 35(1), 55–64 (2010)

    Article  Google Scholar 

  89. Costanzo, G.T., Zhu, G., Anjos, M.F., Savard, G.: A system architecture for autonomous demand side load management in smart buildings. IEEE Trans. Smart Grid 3(4), 2157–2165 (2012)

    Article  Google Scholar 

  90. Agnetis, A., De Pascale, G., Detti, P., Vicino, A.: Load scheduling for household energy consumption optimization. IEEE Trans. Smart Grid 4(4), 2364–2373 (2013)

    Article  Google Scholar 

  91. Mazen, R., Radwan, M., Abdel-Samiea, M.: Utilization of biomass energy in high-rise buildings. In: 2013 4th International Youth Conference on Energy (IYCE), pp. 1–3. IEEE (2013)

  92. Molderink, A., Bakker, V., Bosman, M.G., Hurink, J. L., Smit, G.J.: Domestic energy management methodology for optimizing efficiency in smart grids. In: 2009 IEEE Bucharest PowerTech, pp. 1–7. IEEE (2009)

  93. The NEED project, Biomass. http://www.need.org/Files/curriculum/infobook/BiomassS.pdf. (2012) Accessed 25 Aug 2019

  94. Carpio, M., Zamorano, M., Costa, M.: Impact of using biomass boilers on the energy rating and CO2 emissions of Iberian Peninsula residential buildings. Energy Build. 66, 732–744 (2013)

    Article  Google Scholar 

  95. Berković-Šubić, M., Rauch, M., Dović, D., Andrassy, M.: Primary energy consumption of the dwelling with solar hot water system and biomass boiler. Energy Convers. Manag. 87, 1151–1161 (2014)

    Article  Google Scholar 

  96. Huang, Y., Wang, Y.D., Rezvani, S., McIlveen-Wright, D.R., Anderson, M., Hewitt, N.J.: Biomass fuelled trigeneration system in selected buildings. Energy Convers. Manag. 52(6), 2448–2454 (2011)

    Article  Google Scholar 

  97. Corno, F., Razzak, F.: Intelligent energy optimization for user intelligible goals in smart home environments. IEEE Trans. Smart Grid 3(4), 2128–2135 (2012)

    Article  Google Scholar 

  98. Oureilidis, K.O., Bakirtzis, E.A., Demoulias, C.S.: Frequency-based control of islanded microgrid with renewable energy sources and energy storage. J. Mod. Power Syst. Clean Energy 4(1), 54–62 (2016)

    Article  Google Scholar 

  99. Chen, X., Wei, T., Hu, S.: Uncertainty-aware household appliance scheduling considering dynamic electricity pricing in smart home. IEEE Trans. Smart Grid 4(2), 932–941 (2013)

    Article  Google Scholar 

  100. Chen, C., Wang, J., Kishore, S.: A distributed direct load control approach for large-scale residential demand response. IEEE Trans. Power Syst. 29(5), 2219–2228 (2014)

    Article  Google Scholar 

  101. US Department of Energy. Benefits of demand response in electricity markets and recommendations for achieving them: a report to the United State Congress pursuant to section 1252 of the Energy Policy Act of 2005. https://eetd.lbl.gov/sites/all/files/publications/report-lbnl-1252d.pdf. Accessed 25 Aug 2019

  102. Nacer, A., Marhic, B., Delahoche, L.: Smart home, smart hems, smart heating: an overview of the latest products and trends. In: 2017 6th International Conference on Systems and Control (ICSC), pp. 90–95. IEEE (2017)

  103. Khan, J.Y., Chen, D., Hulin, O.: Enabling technologies for effective deployment of internet of things (IoT) systems. Aust. J. Telecommun. Digit. Econ. (2014). https://doi.org/10.18080/ajtde.v2n4.65

    Article  Google Scholar 

  104. Arbaz, A., Waqas, M., Shehzad, K., Mahmood, A.: Home energy management and knapsack technique in smart grid environment. In: Proceedings of 2nd International Conference on Engineering and Emerging Technologies (ICEET). Lahore, Pakistan (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Nayyar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, B., Nayyar, A. Home energy management system (HEMS): concept, architecture, infrastructure, challenges and energy management schemes. Energy Syst 13, 643–669 (2022). https://doi.org/10.1007/s12667-019-00364-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-019-00364-w

Keywords

Navigation