Skip to main content

Advertisement

Log in

Optimization techniques applied to planning of electric power distribution systems: a bibliographic survey

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Optimization models for the solution of planning problems related to power distribution system (PDS) have been studied and used for decades. The main objective is to optimize investments and minimize total costs, including investment and operation costs. Some of the major concerns of the short-term expansion planning carried out by utilities are high energy losses, low power factor, and inadequate voltage magnitudes. A common solution to address these concerns and improve the performance of a PDS is the installation of capacitor banks (CBs) and voltage regulators (VRs). These devices can be installed at many different points along the PDS, leading to so-called optimal CB and VR allocation problems. Another common alternative is the replacement of conductors of feeders, which leads to the problem of optimal selection of conductors. These can be viewed as classical optimization problems regarding the PDS expansion. This paper presents a comprehensive survey of the models and methods used to solve planning problems of PDS expansion, the focus being on classical optimization problems. Furthermore, models including distributed energy resources in a modern power system era are discussed, showing future research possibilities and trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABC:

Artificial Bee Colony

AC:

Ant Colony

BA:

Bat algorithm

BFA:

Bacterial foraging algorithm

CB:

Capacitor bank

CSA:

Cuckoo search algorithm

DE:

Differential evolution

DER:

Distributed energy resource

DG:

Distributed generation

DP:

Dynamic programming

ESS:

Energy storage systems

FPA:

Flower pollination algorithm

GA:

Genetic algorithm

GSA:

Gravitational search algorithm

HS:

Harmony search

IA:

Immune-based algorithm

IHA:

Improved Harmony algorithm

IMDE:

Intersect mutation differential evolution

MILP:

Mixed integer-linear programming

MINLP:

Mixed integer-nonlinear programming

MIQP:

Mixed integer quadratic programming

MS:

Monkey search

NSGA:

Nondominated sort genetic algorithm

OPF:

Optimal power flow

PABC:

Particle Artificial Bee Colony

PDS:

Power distribution system

PEV:

Plug-in electric vehicles

PGSA:

Plant growth simulation algorithm

PS:

Pattern search

PSO:

Particle swarm optimization

SA:

Simulated annealing

SOCP:

Second-order cone programming

SSO:

Shark smell optimization

TLBO:

Teaching learning based optimization

TS:

Tabu search

VR:

Voltage regulator

References

  1. Abdel-Salam, T.S., Chikhani, A.Y., Hackam, R.: A new technique for loss reduction using compensating capacitors applied to distribution systems with varying load condition. IEEE Trans. Power Deliv. 9(2), 819–827 (1994). https://doi.org/10.1109/61.296262

    Article  Google Scholar 

  2. Abdelaziz, A., Mekhamer, S., Nada, M.: A fuzzy expert system for loss reduction and voltage control in radial distribution systems. Electr. Power Syst. Res. 80(8), 893–897 (2010). https://doi.org/10.1016/j.epsr.2009.12.020. http://www.sciencedirect.com/science/article/pii/S0378779610000106

  3. Abdelaziz, A., Ali, E., Elazim, S.A.: Flower pollination algorithm and loss sensitivity factors for optimal sizing and placement of capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 78, 207–214 (2016). https://doi.org/10.1016/j.ijepes.2015.11.059. http://www.sciencedirect.com/science/article/pii/S0142061515004901

  4. AbulWafa, A.R.: Multi-conductor feeder design for radial distribution networks. Electr. Power Syst. Res. 140, 184–192 (2016). https://doi.org/10.1016/j.epsr.2016.06.023. http://www.sciencedirect.com/science/article/pii/S0378779616302310

  5. Ahmadi, H., Marti, J.: Distribution system optimization based on a linear power-flow formulation. IEEE Trans. Power Deliv. 30(1), 25–33 (2015)

    Article  Google Scholar 

  6. Ahmadigorji, M., Amjady, N.: A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm. Energy 102, 199–215 (2016). https://doi.org/10.1016/j.energy.2016.02.088. http://www.sciencedirect.com/science/article/pii/S0360544216301505

  7. Ali, E., Elazim, S.A., Abdelaziz, A.: Improved harmony algorithm and power loss index for optimal locations and sizing of capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 80, 252–263 (2016). https://doi.org/10.1016/j.ijepes.2015.11.085. http://www.sciencedirect.com/science/article/pii/S0142061515005165

  8. Aman, M., Jasmon, G., Bakar, A., Mokhlis, H., Karimi, M.: Optimum shunt capacitor placement in distribution system—a review and comparative study. Renew. Sustain. Energy Rev. 30, 429–439 (2014). https://doi.org/10.1016/j.rser.2013.10.002. http://www.sciencedirect.com/science/article/pii/S1364032113007016

  9. Anders, G., Vainberg, M., Horrocks, D., Foty, S., Motlis, J., Jarnicki, J.: Parameters affecting economic selection of cable sizes. IEEE Trans. Power Deliv. 8(4), 1661–1667 (1993). https://doi.org/10.1109/61.248270

    Article  Google Scholar 

  10. de Araujo, L.R., Penido, D.R.R., Carneiro, S., Pereira, J.L.R.: Optimal unbalanced capacitor placement in distribution systems for voltage control and energy losses minimization. Electr. Power Syst. Res. 154, 110–121 (2018). https://doi.org/10.1016/j.epsr.2017.08.012. http://www.sciencedirect.com/science/article/pii/S0378779617303309

  11. Asensio, M., de Quevedo, P.M., Munoz-Delgado, G., Contreras, J.: Joint distribution network and renewable energy expansion planning considering demand response and energy storage Part I: stochastic programming model. IEEE Trans. Smart Grid PP(99), 1–1 (2016). https://doi.org/10.1109/TSG.2016.2560339

    Article  Google Scholar 

  12. Asensio, M., de Quevedo, P.M., Munoz-Delgado, G., Contreras, J.: Joint distribution network and renewable energy expansion planning considering demand response and energy storage Part II: Numerical results and considered metrics. IEEE Trans. Smart Grid PP(99), 1–1 (2016). https://doi.org/10.1109/TSG.2016.2560341

    Article  Google Scholar 

  13. Asensio, M., Munoz-Delgado, G., Contreras, J.: Bi-level approach to distribution network and renewable energy expansion planning considering demand response. IEEE Trans. Power Syst. 32(6), 4298–4309 (2017). https://doi.org/10.1109/TPWRS.2017.2672798

    Article  Google Scholar 

  14. Baran, M., Wu, F.: Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Deliv. 4(1), 725–734 (1989a). https://doi.org/10.1109/61.19265

    Article  Google Scholar 

  15. Baran, M.E., Wu, F.F.: Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 4(2), 1401–1407 (1989b). https://doi.org/10.1109/61.25627

    Article  Google Scholar 

  16. Boone, G., Chiang, H.D.: Optimal capacitor placement in distribution systems by genetic algorithm. Int. J. Electri. Power Energy Syst. 15(3), 155–161 (1993). https://doi.org/10.1016/0142-0615(93)90030-Q. http://www.sciencedirect.com/science/article/pii/014206159390030Q

  17. Boulaxis, N.G., Papadopoulos, M.P.: Optimal feeder routing in distribution system planning using dynamic programming technique and gis facilities. IEEE Trans. Power Deliv. 17(1), 242–247 (2002). https://doi.org/10.1109/61.974213

    Article  Google Scholar 

  18. C619 CWG (2013) Planning and optimization methods for active distribution systems. CIGRE

  19. Carrano, E.G., Soares, L.A.E., Takahashi, R.H.C., Saldanha, R.R., Neto, O.M.: Electric distribution network multiobjective design using a problem-specific genetic algorithm. IEEE Trans. Power Deliv. 21(2), 995–1005 (2006). https://doi.org/10.1109/TPWRD.2005.858779

    Article  Google Scholar 

  20. Chang, C.F.: Reconfiguration and capacitor placement for loss reduction of distribution systems by ant colony search algorithm. IEEE Trans. Power Syst. 23(4), 1747–1755 (2008). https://doi.org/10.1109/TPWRS.2008.2002169

    Article  Google Scholar 

  21. Chiang, H.D., Wang, J.C., Cockings, O., Shin, H.D.: Optimal capacitor placements in distribution systems. I. a new formulation and the overall problem. IEEE Trans. Power Deliv. 5(2), 634–642 (1990a). https://doi.org/10.1109/61.53065

    Article  Google Scholar 

  22. Chiang, H.D., Wang, J.C., Cockings, O., Shin, H.D.: Optimal capacitor placements in distribution systems. II. solution algorithms and numerical results. IEEE Trans. Power Deliv. 5(2), 643–649 (1990b). https://doi.org/10.1109/61.53066

    Article  Google Scholar 

  23. Chiou, J.P., Chang, C.F.: Development of a novel algorithm for optimal capacitor placement in distribution systems. Int. J. Electr. Power Energy Syst. 73, 684–690 (2015). https://doi.org/10.1016/j.ijepes.2015.06.003. http://www.sciencedirect.com/science/article/pii/S0142061515002598

  24. Chiou, J.P., Chang, C.F., Su, C.T.: Ant direction hybrid differential evolution for solving large capacitor placement problems. IEEE Trans. Power Syst. 19(4), 1794–1800 (2004). https://doi.org/10.1109/TPWRS.2004.835651

    Article  Google Scholar 

  25. Chis, M., Salama, M.M.A., Jayaram, S.: Capacitor placement in distribution systems using heuristic search strategies. IEE Proc. Gen. Transm. Distrib. 144(3), 225–230 (1997). https://doi.org/10.1049/ip-gtd:19970945

    Article  Google Scholar 

  26. Civanlar, S., Grainger, J.: Volt/var control on distribution systems with lateral branches using shunt capacitors and voltage regulators Part II: the solution method. IEEE Trans. Power Apparatus Syst. PAS–104(11), 3284–3290 (1985). https://doi.org/10.1109/TPAS.1985.318843

    Article  Google Scholar 

  27. Civanlar, S., Grainger, J.: Volt/var control on distribution systems with lateral branches using switched capacitors and voltage regulators Part III: the numerical results. IEEE Power Eng. Rev. PER–5(11), 54–54 (1985). https://doi.org/10.1109/MPER.1985.5528389

    Article  Google Scholar 

  28. Conti, S., Rizzo, S.A.: An open source tool for reliability evaluation of distribution systems with renewable generators. Energy Syst. (2017). https://doi.org/10.1007/s12667-017-0264-6

  29. Cook, R.: Analysis of capacitor application as affected by load cycle. IEEE Trans. Power Apparatus Syst. 78(3), 950–956 (1959). https://doi.org/10.1109/AIEEPAS.1959.4500475

    Article  Google Scholar 

  30. Cook, R.: Optimizing the application of shunt capacitors for reactive-volt-ampere control and loss reduction. IEEE Trans. Power Apparatus Syst. 80(3), 430–441 (1961). https://doi.org/10.1109/AIEEPAS.1961.4501064

    Article  Google Scholar 

  31. Devabalaji, K., Ravi, K., Kothari, D.: Optimal location and sizing of capacitor placement in radial distribution system using bacterial foraging optimization algorithm. Int. J. Electr. Power Energy Syst. 71, 383–390 (2015). https://doi.org/10.1016/j.ijepes.2015.03.008. http://www.sciencedirect.com/science/article/pii/S014206151500143X

  32. Dixit, M., Kundu, P., Jariwala, H.R.: Integration of distributed generation for assessment of distribution system reliability considering power loss, voltage stability and voltage deviation. Energy Systems (2017). https://doi.org/10.1007/s12667-017-0248-6

    Article  Google Scholar 

  33. Donadel, C.B., Fardin, J.F., Encarnação, L.F.: Electrical distribution network operation with a presence of distributed generation units in a pre smart grid environment using a clustering-based methodology. Energy Sys. 6(4), 455–477 (2015). https://doi.org/10.1007/s12667-015-0150-z

    Article  Google Scholar 

  34. Duque, F.G., de Oliveira, L.W., de Oliveira, E.J., Marcato Jr., A.L., ICS, : Allocation of capacitor banks in distribution systems through a modified monkey search optimization technique. Int. J. Electr. Power Energy Syst. 73, 420–432 (2015). https://doi.org/10.1016/j.ijepes.2015.05.034. http://www.sciencedirect.com/science/article/pii/S0142061515002392

  35. Eajal, A., El-Hawary, M.: Optimal capacitor placement and sizing in unbalanced distribution systems with harmonics consideration using particle swarm optimization. IEEE Trans. Power Deliv. 25(3), 1734–1741 (2010). https://doi.org/10.1109/TPWRD.2009.2035425

    Article  Google Scholar 

  36. El-Ela, A.A.A., El-Sehiemy, R.A., Kinawy, A.M., Mouwafi, M.T.: Optimal capacitor placement in distribution systems for power loss reduction and voltage profile improvement. IET Gen. Transm. Distrib. 10(5), 1209–1221 (2016). https://doi.org/10.1049/iet-gtd.2015.0799

    Article  Google Scholar 

  37. El-Fergany, A.: Optimal capacitor allocations using evolutionary algorithms. IET Gen. Transm. Distrib. 7(6), 593–601 (2013). https://doi.org/10.1049/iet-gtd.2012.0661

    Article  Google Scholar 

  38. El-Fergany, A., Abdelaziz, A.: Capacitor allocations in radial distribution networks using cuckoo search algorithm. IET Gen. Transm. Distrib. 8(2), 223–232 (2014a). https://doi.org/10.1049/iet-gtd.2013.0290

    Article  Google Scholar 

  39. El-Fergany, A., Abdelaziz, A.: Multi-objective capacitor allocations in distribution networks using artificial bee colony algorithm. J. Electr. Eng. Technol. 9(2), 441–451 (2014b). https://doi.org/10.5370/JEET.2014.9.2.441

    Article  Google Scholar 

  40. El-Fergany, A., Abdelaziz, A.: Efficient heuristic-based approach for multi-objective capacitor allocation in radial distribution networks. IET Gen. Transm. Distrib. 8(1), 70–80 (2014c). https://doi.org/10.1049/iet-gtd.2013.0213

    Article  Google Scholar 

  41. El-kady, M.A.: Computer-aided planning of distribution substation and primary feeders. IEEE Trans. Power Apparatus Syst. PAS–103(6), 1183–1189 (1984). https://doi.org/10.1109/TPAS.1984.318447

    Article  Google Scholar 

  42. El-Khattam, W., Hegazy, Y.G., Salama, M.M.A.: An integrated distributed generation optimization model for distribution system planning. IEEE Trans. Power Syst. 20(2), 1158–1165 (2005). https://doi.org/10.1109/TPWRS.2005.846114

    Article  Google Scholar 

  43. Farahani, V., Vahidi, B., Abyaneh, H.A.: Reconfiguration and capacitor placement simultaneously for energy loss reduction based on an improved reconfiguration method. IEEE Trans. Power Syst. 27(2), 587–595 (2012). https://doi.org/10.1109/TPWRS.2011.2167688

    Article  Google Scholar 

  44. Farahani, V., Sadeghi, S., Abyaneh, H., Agah, S., Mazlumi, K.: Energy loss reduction by conductor replacement and capacitor placement in distribution systems. IEEE Trans. Power Syst. 28(3), 2077–2085 (2013). https://doi.org/10.1109/TPWRS.2013.2251012

    Article  Google Scholar 

  45. Fletcher, R.H., Strunz, K.: Optimal distribution system horizon planning Part I: formulation. IEEE Trans. Power Syst. 22(2), 791–799 (2007). https://doi.org/10.1109/TPWRS.2007.895173

    Article  Google Scholar 

  46. Franco, J.F., Rider, M.J., Lavorato, M., Romero, R.: Optimal conductor size selection and reconductoring in radial distribution systems using a mixed-integer LP approach. IEEE Trans. Power Syst. 28(1), 10–20 (2013a). https://doi.org/10.1109/TPWRS.2012.2201263

    Article  Google Scholar 

  47. Franco, J.F., Rider, M.J., Lavorato, M., Romero, R.: A mixed-integer LP model for the optimal allocation of voltage regulators and capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 48, 123–130 (2013b). https://doi.org/10.1016/j.ijepes.2012.11.027. http://www.sciencedirect.com/science/article/pii/S0142061512006801

  48. Gallego, R., Monticelli, A., Romero, R.: Optimal capacitor placement in radial distribution networks. IEEE Trans. Power Syst. 16(4), 630–637 (2001). https://doi.org/10.1109/59.962407

    Article  Google Scholar 

  49. Ganguly, S., Sahoo, N.C., Das, D.: A novel multi-objective pso for electrical distribution system planning incorporating distributed generation. Energy Syst. 1(3), 291–337 (2010). https://doi.org/10.1007/s12667-010-0014-5

    Article  Google Scholar 

  50. Ganguly, S., Sahoo, N.C., Das, D.: Recent advances on power distribution system planning: a state-of-the-art survey. Energy Syst. 4(2), 165–193 (2013). https://doi.org/10.1007/s12667-012-0073-x

    Article  Google Scholar 

  51. Georgilakis, P.S., Hatziargyriou, N.D.: A review of power distribution planning in the modern power systems era: models, methods and future research. Electr. Power Syst. Res. 121, 89–100 (2015). https://doi.org/10.1016/j.epsr.2014.12.010. http://www.sciencedirect.com/science/article/pii/S0378779614004490

  52. Ghadiri, A., Haghifam, M.R., Larimi, S.M.M.: Comprehensive approach for hybrid ac/dc distribution network planning using genetic algorithm. IET Gen. Transm. Distrib. 11(16), 3892–3902 (2017). https://doi.org/10.1049/iet-gtd.2016.1293

    Article  Google Scholar 

  53. Ghalehkhondabi, I., Ardjmand, E., Weckman, G.R., Young, W.A.: An overview of energy demand forecasting methods published in 2005–2015. Energy Syst. 8(2), 411–447 (2017). https://doi.org/10.1007/s12667-016-0203-y

    Article  Google Scholar 

  54. Gnanasekaran, N., Chandramohan, S., Kumar, P.S., Imran, A.M.: Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm. Ain Shams Eng. J. 7(2), 907–916 (2016). https://doi.org/10.1016/j.asej.2016.01.006. http://www.sciencedirect.com/science/article/pii/S2090447916000149

  55. Gonçalves, R., Franco, J., Rider, M.: Short-term expansion planning of radial electrical distribution systems using mixed-integer linear programming. IET Gen. Transm. Distrib. 9(3), 256–266 (2015). https://doi.org/10.1049/iet-gtd.2014.0231

    Article  Google Scholar 

  56. Grainger, J., Civanlar, S.: Volt/var control on distribution systems with lateral branches using shunt capacitors and voltage regulators Part I: The overall problem. IEEE Trans. Power Apparatus Syst. PAS–104(11), 3278–3283 (1985). https://doi.org/10.1109/TPAS.1985.318842

    Article  Google Scholar 

  57. Grainger, J., Lee, S.H.: Optimum size and location of shunt capacitors for reduction of losses on distribution feeders. IEEE Trans. Power Apparatus Syst. PAS–100(3), 1105–1118 (1981). https://doi.org/10.1109/TPAS.1981.316577

    Article  Google Scholar 

  58. Grainger, J., Lee, S.H.: Capacity release by shunt capacitor placement on distribution feeders: A new voltage-dependent model. IEEE Trans. Power Apparatus Syst. PAS–101(5), 1236–1244 (1982). https://doi.org/10.1109/TPAS.1982.317385

    Article  Google Scholar 

  59. Haffner, S., Pereira, L.F.A., Pereira, L.A., Barreto, L.S.: Multistage model for distribution expansion planning with distributed generation Part I: problem formulation. IEEE Trans. Power Deliv. 23(2), 915–923 (2008a). https://doi.org/10.1109/TPWRD.2008.917916

    Article  Google Scholar 

  60. Haffner, S., Pereira, L.F.A., Pereira, L.A., Barreto, L.S.: Multistage model for distribution expansion planning with distributed generation Part II: numerical results. IEEE Trans. Power Deliv. 23(2), 924–929 (2008b). https://doi.org/10.1109/TPWRD.2008.917911

    Article  Google Scholar 

  61. Haque, M.H.: Capacitor placement in radial distribution systems for loss reduction. IEE Proc. Gen. Transm. Distrib. 146(5), 501–505 (1999). https://doi.org/10.1049/ip-gtd:19990495

    Article  Google Scholar 

  62. Huang, S.J.: An immune-based optimization method to capacitor placement in a radial distribution system. IEEE Trans. Power Deliv. 15(2), 744–749 (2000). https://doi.org/10.1109/61.853014

    Article  Google Scholar 

  63. Huang, Y.C., Yang, H.T., Huang, C.L.: Solving the capacitor placement problem in a radial distribution system using tabu search approach. IEEE Trans. Power Syst. 11(4), 1868–1873 (1996). https://doi.org/10.1109/59.544656

    Article  MathSciNet  Google Scholar 

  64. Humayd, A.S.B., Bhattacharya, K.: Comprehensive multi-year distribution system planning using back-propagation approach. IET Gen. Transm. Distrib. 7(12), 1415–1425 (2013). https://doi.org/10.1049/iet-gtd.2012.0706

    Article  Google Scholar 

  65. Humayd, A.S.B., Bhattacharya, K.: Distribution system planning to accommodate distributed energy resources and pevs. Electr. Power Syst. Res. 145, 1–11 (2017). https://doi.org/10.1016/j.epsr.2016.12.016. http://www.sciencedirect.com/science/article/pii/S0378779616305296

  66. Injeti, S.K., Thunuguntla, V.K., Shareef, M.: Optimal allocation of capacitor banks in radial distribution systems for minimization of real power loss and maximization of network savings using bio-inspired optimization algorithms. Int. J. Electr. Power Energy Syst. 69, 441–455 (2015). https://doi.org/10.1016/j.ijepes.2015.01.040. http://www.sciencedirect.com/science/article/pii/S0142061515000708

  67. Jin, S., Ryan, S.M., Watson, J.P., Woodruff, D.L.: Modeling and solving a large-scale generation expansion planning problem under uncertainty. Energy Syst. 2(3), 209–242 (2011). https://doi.org/10.1007/s12667-011-0042-9

    Article  Google Scholar 

  68. Jordehi, A.R.: Optimisation of electric distribution systems: a review. Renew. Sustain. Energy Rev. 51, 1088–1100 (2015). https://doi.org/10.1016/j.rser.2015.07.004. http://www.sciencedirect.com/science/article/pii/S1364032115006516

  69. Kanwar N, Gupta N, Niazi K, Swarnkar A, Bansal R (2017) Simultaneous allocation of distributed energy resource using improved particle swarm optimization. Applied Energy 185:1684–1693. https://doi.org/10.1016/j.apenergy.2016.01.093. http://www.sciencedirect.com/science/article/pii/S0306261916300800

  70. Karagiannopoulos, S., Aristidou, P., Hug, G.: Hybrid approach for planning and operating active distribution grids. IET Gen. Transm. Distrib. 11(3), 685–695 (2017). https://doi.org/10.1049/iet-gtd.2016.0642

    Article  Google Scholar 

  71. Karimi, H., Dashti, R.: Comprehensive framework for capacitor placement in distribution networks from the perspective of distribution system management in a restructured environment. Int. J. Electr. Power Energy Syst. 82, 11–18 (2016). https://doi.org/10.1016/j.ijepes.2016.02.025. http://www.sciencedirect.com/science/article/pii/S0142061516302873

  72. Kaur, D., Sharma, J.: Optimal conductor sizing in radial distribution systems planning. Int. J. Electri. Power Energy Syst. 30(4), 261–271 (2008). https://doi.org/10.1016/j.ijepes.2007.07.005. http://www.sciencedirect.com/science/article/pii/S0142061507001007

  73. Kersting, W.: Distribution System Modeling and Analysis. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  74. Khator, S.K., Leung, L.C.: Power distribution planning: a review of models and issues. IEEE Trans. Power Syst. 12(3), 1151–1159 (1997). https://doi.org/10.1109/59.630455

    Article  Google Scholar 

  75. Khodabakhshian, A., Andishgar, M.H.: Simultaneous placement and sizing of DGs and shunt capacitors in distribution systems by using IMDE algorithm. Int. J. Electr. Power Energy Syst. 82, 599–607 (2016). https://doi.org/10.1016/j.ijepes.2016.04.002. http://www.sciencedirect.com/science/article/pii/S0142061516306342

  76. Khodayifar, S., Raayatpanah, M.A., Pardalos, P.M.: An accelerating benders’ decomposition approach to the integrated supply chain network design with distributed generation. Energy Syst. (2017). https://doi.org/10.1007/s12667-017-0256-6

  77. Kobayashi, T., Aoki, H.: Svr optimal placement problem in distribution network with distributed generators. In: Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, California, USA, pp. 1–7, (2012). https://doi.org/10.1109/PESGM.2012.6345261

  78. Kou, W., Jung, S.H., Park, S.Y.: Optimal location strategy for distributed generation to maximize system voltage stability based on line sensitivity factors. Energy Syst. (2017). https://doi.org/10.1007/s12667-017-0260-x

  79. Koutsoukis, N.C., Georgilakis, P.S., Hatziargyriou, N.D.: Multi-stage power distribution planning to accommodate high wind generation capacity. In: Proceedings of the IEEE PowerTech, Eindhoven, The Netherlands, pp. 1–6 (2015). https://doi.org/10.1109/PTC.2015.7232754

  80. Koutsoukis, N.C., Georgilakis, P.S., Hatziargyriou, N.D.: Multistage coordinated planning of active distribution networks. IEEE Tran. Power Syst. PP(99), 1–1 (2017). https://doi.org/10.1109/TPWRS.2017.2699696

    Article  Google Scholar 

  81. Krishnan, V., Ho, J., Hobbs, B.F., Liu, A.L., McCalley, J.D., Shahidehpour, M., Zheng, Q.P.: Co-optimization of electricity transmission and generation resources for planning and policy analysis: review of concepts and modeling approaches. Energy Syst. 7(2), 297–332 (2016). https://doi.org/10.1007/s12667-015-0158-4

    Article  Google Scholar 

  82. Latorre, G., Cruz, R.D., Areiza, J.M., Villegas, A.: Classification of publications and models on transmission expansion planning. IEEE Trans. Power Syst. 18(2), 938–946 (2003). https://doi.org/10.1109/TPWRS.2003.811168

    Article  Google Scholar 

  83. Lazaroiu, G.C., Dumbrava, V., Costoiu, M., Sima, C.A., Leva, S.: Optimizing discos planning for networks with distributed energy resources. In: 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), pp. 1–6 (2017). https://doi.org/10.1109/EEEIC.2017.7977694

  84. Lee, C.S., Ayala, H.V.H., dos Santos, Coelho L.: Capacitor placement of distribution systems using particle swarm optimization approaches. Int. J. Electr. Power Energy Syst. 64, 839–851 (2015). https://doi.org/10.1016/j.ijepes.2014.07.069. http://www.sciencedirect.com/science/article/pii/S0142061514005134

  85. Lee, S.H., Grainger, J.: Optimum placement of fixed and switched capacitors on primary distribution feeders. IEEE Trans. Power Apparatus Syst. PAS–100(1), 345–352 (1981). https://doi.org/10.1109/TPAS.1981.316862

    Article  Google Scholar 

  86. Levitin, G., Kalyuzhny, A., Shenkman, A., Chertkov, M.: Optimal capacitor allocation in distribution systems using a genetic algorithm and a fast energy loss computation technique. IEEE Trans. Power Deliv. 15(2), 623–628 (2000). https://doi.org/10.1109/61.852995

    Article  Google Scholar 

  87. de Lima, M.A.X., Clemente, T.R.N., de Almeida, A.T.: Prioritization for allocation of voltage regulators in electricity distribution systems by using a multicriteria approach based on additive-veto model. Int. J. Electr. Power Energy Syst. 77, 1–8 (2016). https://doi.org/10.1016/j.ijepes.2015.11.006. http://www.sciencedirect.com/science/article/pii/S0142061515004251

  88. Lohmann, T., Rebennack, S.: Tailored benders decomposition for a long-term power expansion model with short-term demand response. Manag. Science. 63(6), 2027–2048 (2017). https://doi.org/10.1287/mnsc.2015.2420

    Article  Google Scholar 

  89. Lotero, R.C., Contreras, J.: Distribution system planning with reliability. IEEE Trans. Power Deliv. 26(4), 2552–2562 (2011). https://doi.org/10.1109/TPWRD.2011.2167990

    Article  Google Scholar 

  90. Madaeni, S.H., Sioshansi, R.: The impacts of stochastic programming and demand response on wind integration. Energy Syst. 4(2), 109–124 (2013). https://doi.org/10.1007/s12667-012-0068-7

    Article  Google Scholar 

  91. Mansor, N.N., Levi, V.: Integrated planning of distribution networks considering utility planning concepts. IEEE Trans. Power Syst. 32(6), 4656–4672 (2017). https://doi.org/10.1109/TPWRS.2017.2687099

    Article  Google Scholar 

  92. Marti, J., Ahmadi, H., Bashualdo, L.: Linear power-flow formulation based on a voltage-dependent load model. IEEE Trans. Power Deliv. 28(3), 1682–1690 (2013)

    Article  Google Scholar 

  93. Melgar Dominguez, O.D., Pourakbari Kasmaei, M., Lavorato, M., Mantovani, J.R.S.: Optimal siting and sizing of renewable energy sources, storage devices, and reactive support devices to obtain a sustainable electrical distribution systems. Energy Syst. (2017). https://doi.org/10.1007/s12667-017-0254-8

  94. Mendoza, J., Morales, D., Lopez, R., Lopez, E., Vannier, J.C., Coello, C.: Multiobjective location of automatic voltage regulators in a radial distribution network using a micro genetic algorithm. IEEE Trans. Power Syst. 22(1), 404–412 (2007). https://doi.org/10.1109/TPWRS.2006.887963

    Article  Google Scholar 

  95. Mendoza, J.E., Pea, H.E.: Automatic voltage regulators siting in distribution systems considering hourly demand. Electr. Power Syst. Res. 81(5), 1124–1131 (2011). https://doi.org/10.1016/j.epsr.2010.12.012. http://www.sciencedirect.com/science/article/pii/S0378779610003354

  96. Milosevic, B., Begovic, M.: Capacitor placement for conservative voltage reduction on distribution feeders. IEEE Trans. Power Deliv. 19(3), 1360–1367 (2004). https://doi.org/10.1109/TPWRD.2004.824400

    Article  Google Scholar 

  97. Mishra, S., Das, D., Paul, S.: A comprehensive review on power distribution network reconfiguration. Energy Syst. 8(2), 227–284 (2017). https://doi.org/10.1007/s12667-016-0195-7

    Article  Google Scholar 

  98. Munoz-Delgado, G., Contreras, J., Arroyo, J.M.: Joint expansion planning of distributed generation and distribution networks. IEEE Trans. Power Syst. 30(5), 2579–2590 (2015). https://doi.org/10.1109/TPWRS.2014.2364960

    Article  Google Scholar 

  99. Munoz-Delgado, G., Contreras, J., Arroyo, J.M.: Multistage generation and network expansion planning in distribution systems considering uncertainty and reliability. IEEE Trans. Power Syst. 31(5), 3715–3728 (2016). https://doi.org/10.1109/TPWRS.2015.2503604

    Article  Google Scholar 

  100. Muthukumar, K., Jayalalitha, S.: Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. Int. J. Electr. Power Energy Syst. 78, 299–319 (2016). https://doi.org/10.1016/j.ijepes.2015.11.019. http://www.sciencedirect.com/science/article/pii/S0142061515004391

  101. Muthukumar, K., Jayalalitha, S.: Integrated approach of network reconfiguration with distributed generation and shunt capacitors placement for power loss minimization in radial distribution networks. Applied Soft Computing 52, 1262–1284 (2017). https://doi.org/10.1016/j.asoc.2016.07.031. http://www.sciencedirect.com/science/article/pii/S156849461630357X

  102. Naik, S.G., Khatod, D., Sharma, M.: Optimal allocation of combined dg and capacitor for real power loss minimization in distribution networks. Int. J. Electr. Power Energy Syst. 53, 967–973 (2013). https://doi.org/10.1016/j.ijepes.2013.06.008

    Article  Google Scholar 

  103. Neagle, N.M., Samson, D.R.: Loss reduction from capacitors installed on primary feeders [includes discussion]. IEEE Trans. Power Apparatus Syst. 75(3), (1956). https://doi.org/10.1109/AIEEPAS.1956.4499390

  104. Ng, H.N., Salama, M., Chikhani, A.: Classification of capacitor allocation techniques. IEEE Trans. Power Deliv. 15(1), 387–392 (2000). https://doi.org/10.1109/61.847278

    Article  Google Scholar 

  105. Niharika, Verma S., Mukherjee, V.: Transmission expansion planning: a review. In: 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), pp. 350–355 (2016). https://doi.org/10.1109/ICEETS.2016.7583779

  106. Niknam, T., Narimani, M.R., Azizipanah-Abarghooee, R.: A multi-objective fuzzy adaptive pso algorithm for location of automatic voltage regulators in radial distribution networks. Int. J. Control Autom. Syst. 10(4), 772–777 (2012). https://doi.org/10.1007/s12555-012-0413-6

    Article  Google Scholar 

  107. Nojavan, S., Jalali, M., Zare, K.: Optimal allocation of capacitors in radial/mesh distribution systems using mixed integer nonlinear programming approach. Electr. Power Syst. Research 107, 119–124 (2014). https://doi.org/10.1016/j.epsr.2013.09.019. http://www.sciencedirect.com/science/article/pii/S0378779613002708

  108. Ochoa, L., Harrison, G.: Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation. IEEE Trans. Power Syst. 26(1), 198–205 (2011). https://doi.org/10.1109/TPWRS.2010.2049036

    Article  Google Scholar 

  109. Paiva, P.C., Khodr, H.M., Dominguez-Navarro, J.A., Yusta, J.M., Urdaneta, A.J.: Integral planning of primary-secondary distribution systems using mixed integer linear programming. IEEE Trans. Power Syst. 20(2), 1134–1143 (2005). https://doi.org/10.1109/TPWRS.2005.846108

    Article  Google Scholar 

  110. Pardalos, P., Resende, M.: Handbook of Applied Optimization. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  111. Pavani, P., Singh, S.N.: Economic Aspects of Distributed Generation, pp. 731–748. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-51343-0

    Book  Google Scholar 

  112. Pereira, B.R., da Costa, G.R.M., Contreras, J., Mantovani, J.R.S.: Optimal distributed generation and reactive power allocation in electrical distribution systems. IEEE Trans. Sustain. Energy 7(3), 975–984 (2016). https://doi.org/10.1109/TSTE.2015.2512819

    Article  Google Scholar 

  113. Pereira Júnior, B.R., Cossi, A.M., Contreras, J., Mantovani, J.R.S.: Multiobjective multistage distribution system planning using tabu search. IET Gen. Transm. Distrib. 8(1), 35–45 (2014). https://doi.org/10.1049/iet-gtd.2013.0115

    Article  Google Scholar 

  114. Pires, D.F., Martins, A.G., Antunes, C.H.: A multiobjective model for var planning in radial distribution networks based on tabu search. IEEE Trans. Power Syst. 20(2), 1089–1094 (2005). https://doi.org/10.1109/TPWRS.2005.846068

    Article  Google Scholar 

  115. Ponnavaikko, M., Rao, K.S.P.: An approach to optimal distribution system planning through conductor gradation. IEEE Power Eng. Rev. PER–2(6), 56–57 (1982). https://doi.org/10.1109/MPER.1982.5521021

    Article  Google Scholar 

  116. Ramadan, H., Bendary, A., Nagy, S.: Particle swarm optimization algorithm for capacitor allocation problem in distribution systems with wind turbine generators. Int. J. Electr. Power Energy Syst. 84, 143–152 (2017). https://doi.org/10.1016/j.ijepes.2016.04.041, http://www.sciencedirect.com/science/article/pii/S0142061516307268

  117. Rebennack, S.: Generation expansion planning under uncertainty with emissions quotas. Electr. Power Syst. Res. 114, 78–85 (2014). https://doi.org/10.1016/j.epsr.2014.04.010. http://www.sciencedirect.com/science/article/pii/S0378779614001503

  118. Resch, M., Bhler, J., Klausen, M., Sumper, A.: Impact of operation strategies of large scale battery systems on distribution grid planning in Germany. Renew. Sustain. Energy Rev. 74, 1042–1063 (2017). https://doi.org/10.1016/j.rser.2017.02.075. http://www.sciencedirect.com/science/article/pii/S1364032117302976

  119. Resener, M., Haffner, S., Pereira, L.A., Pardalos, P.M.: Mixed-integer LP model for volt/var control and energy losses minimization in distribution systems. Electr. Power Syst. Res. 140, 895–905 (2016). https://doi.org/10.1016/j.epsr.2016.04.015. http://www.sciencedirect.com/science/article/pii/S0378779616301328

  120. Resener, M., Haffner, S., Pardalos, P.M., Pereira, L.A.: A Convex Model for the Optimization of Distribution Systems with Distributed Generation, pp. 231–245. Springer International Publishing, Cham (2017)

    Google Scholar 

  121. Safigianni, A., Salis, G.: Optimum voltage regulator placement in a radial power distribution network. IEEE Trans. Power Syst. 15(2), 879–886 (2000). https://doi.org/10.1109/59.867188

    Article  Google Scholar 

  122. Safigianni, A., Salis, G.: Optimum VAR control of radial primary power distribution networks by shunt capacitor installation. Int. J. Electr. Power Energy Syst. 23(5), 389–401 (2001). https://doi.org/10.1016/S0142-0615(00)00071-5. http://www.sciencedirect.com/science/article/pii/S0142061500000715

  123. Salis, G., Safigianni, A.: Long-term optimization of radial primary distribution networks by conductor replacements. Int. J. Electr. Power Energy Syst. 21(5), 349–355 (1999). https://doi.org/10.1016/S0142-0615(99)00003-4. http://www.sciencedirect.com/science/article/pii/S0142061599000034

  124. Samal, P., Ganguly, S., Mohanty, S.: Planning of unbalanced radial distribution systems using differential evolution algorithm. Energy Syst. 8(2), 389–410 (2017). https://doi.org/10.1007/s12667-016-0202-z

    Article  Google Scholar 

  125. Santos, S.F., Fitiwi, D.Z., Shafie-khah, M., Bizuayehu, A.W., Cabrita, C.M.P., Catalo, J.P.S.: New multi-stage and stochastic mathematical model for maximizing res hosting capacity—part ii: numerical results. IEEE Trans. Sustain. Energy 8(1), 320–330 (2017a). https://doi.org/10.1109/TSTE.2016.2584122

    Article  Google Scholar 

  126. Santos, S.F., Fitiwi, D.Z., Shafie-Khah, M., Bizuayehu, A.W., Cabrita, C.M.P., Catalo, J.P.S.: New multistage and stochastic mathematical model for maximizing res hosting capacity—part i: problem formulation. IEEE Trans. Sustain. Energy 8(1), 304–319 (2017b). https://doi.org/10.1109/TSTE.2016.2598400

    Article  Google Scholar 

  127. Schmill, J.V.: Optimum size and location of shunt capacitors on distribution feeders. IEEE Trans. Power Apparatus Syst. 84(9), 825–832 (1965). https://doi.org/10.1109/TPAS.1965.4766262

    Article  Google Scholar 

  128. Segura, S., Romero, R., Rider, M.J.: Efficient heuristic algorithm used for optimal capacitor placement in distribution systems. Int. J. Electr. Power Energy Syst. 32(1), 71–78 (2010). https://doi.org/10.1016/j.ijepes.2009.06.024

    Article  Google Scholar 

  129. Shen, X., Shahidehpour, M., Han, Y., Zhu, S., Zheng, J.: Expansion planning of active distribution networks with centralized and distributed energy storage systems. IEEE Trans. Sustain. Energy 8(1), 126–134 (2017). https://doi.org/10.1109/TSTE.2016.2586027

    Article  Google Scholar 

  130. Short, T.: Electric Power Distribution Handbook. Electric Power Engineering. Taylor & Francis, UK (2003)

    Book  Google Scholar 

  131. Shortle, J., Rebennack, S., Glover, F.W.: Transmission-capacity expansion for minimizing blackout probabilities. IEEE Trans. Power Syst. 29(1), 43–52 (2014). https://doi.org/10.1109/TPWRS.2013.2279508

    Article  Google Scholar 

  132. Shuaib, Y.M., Kalavathi, M.S., Rajan, C.C.A.: Optimal capacitor placement in radial distribution system using gravitational search algorithm. Int. J. Electr. Power Energy Syst. 64, 384–397 (2015). https://doi.org/10.1016/j.ijepes.2014.07.041. http://www.sciencedirect.com/science/article/pii/S0142061514004736

  133. da Silva, I.C., Carneiro, S., de Oliveira, E.J., de Souza, Costa J., Pereira, J.L.R., Garcia, P.A.N.: A heuristic constructive algorithm for capacitor placement on distribution systems. IEEE Trans. Power Syst. 23(4), 1619–1626 (2008). https://doi.org/10.1109/TPWRS.2008.2004742

    Article  Google Scholar 

  134. Singh, B., Sharma, J.: A review on distributed generation planning. Renew. Sustain. Energy Rev. 76, 529–544 (2017). https://doi.org/10.1016/j.rser.2017.03.034. http://www.sciencedirect.com/science/article/pii/S1364032117303568

  135. de Souza, B.A., de Almeida, A.M.F.: Multiobjective optimization and fuzzy logic applied to planning of the volt/var problem in distributions systems. IEEE Trans. Power Syst. 25(3), 1274–1281 (2010). https://doi.org/10.1109/TPWRS.2010.2042734

    Article  Google Scholar 

  136. de Souza, B.A., Alves, H.N., Ferreira, H.A.: Microgenetic algorithms and fuzzy logic applied to the optimal placement of capacitor banks in distribution networks. IEEE Trans. Power Syst. 19(2), 942–947 (2004). https://doi.org/10.1109/TPWRS.2004.825901

    Article  Google Scholar 

  137. de Souza, J., Rider, M.J., Mantovani, J.R.S.: Planning of distribution systems using mixed-integer linear programming models considering network reliability. J. Control Autom. Electr. Syst. 26(2), 170–179 (2015). https://doi.org/10.1007/s40313-014-0165-z

    Article  Google Scholar 

  138. Sultana, S., Roy, P.K.: Optimal capacitor placement in radial distribution systems using teaching learning based optimization. Int. J. Electr. Power Energy Systems 54, 387–398 (2014). https://doi.org/10.1016/j.ijepes.2013.07.011. http://www.sciencedirect.com/science/article/pii/S0142061513003086

  139. Sun, D.I., Farris, D.R., Cote, P.J., Shoults, R.R., Chen, M.S.: Optimal distribution substation and primary feeder planning via the fixed charge network formulation. IEEE Trans. Power Apparatus Syst. PAS–101(3), 602–609 (1982). https://doi.org/10.1109/TPAS.1982.317273

    Article  Google Scholar 

  140. Sundhararajan, S., Pahwa, A.: Optimal selection of capacitors for radial distribution systems using a genetic algorithm. IEEE Trans. Power Syst. 9(3), 1499–1507 (1994). https://doi.org/10.1109/59.336111

    Article  Google Scholar 

  141. Szuvovivski, I., Fernandes, T., Aoki, A.: Simultaneous allocation of capacitors and voltage regulators at distribution networks using genetic algorithms and optimal power flow. Int. J. Electr. Power Energy Syst. 40(1), 62–69 (2012). https://doi.org/10.1016/j.ijepes.2012.02.006. http://www.sciencedirect.com/science/article/pii/S0142061512000336

  142. Tabares, A., Franco, J.F., Lavorato, M., Rider, M.J.: Multistage long-term expansion planning of electrical distribution systems considering multiple alternatives. IEEE Trans. Power Syst. 31(3), 1900–1914 (2016). https://doi.org/10.1109/TPWRS.2015.2448942

    Article  Google Scholar 

  143. Tang, Y.: Power distribution system planning with reliability modeling and optimization. IEEE Trans. Power Syst. 11(1), 181–189 (1996). https://doi.org/10.1109/59.486711

    Article  Google Scholar 

  144. Tang, Y., Low, S.H.: Optimal placement of energy storage in distribution networks. IEEE Trans. Smart Grid 8(6), 3094–3103 (2017). https://doi.org/10.1109/TSG.2017.2711921

    Article  MathSciNet  Google Scholar 

  145. Temraz, H.K., Quintana, V.H.: Distribution system expansion planning models: an overview. Electr. Power Syst. Res. 26(1), 61–70 (1993). https://doi.org/10.1016/0378-7796(93)90069-Q

    Article  Google Scholar 

  146. Vaziri, M., Tomsovic, K., Bose, A.: A directed graph formulation of the multistage distribution expansion problem. IEEE Trans. Power Deliv. 19(3), 1335–1341 (2004a). https://doi.org/10.1109/TPWRD.2004.829146

    Article  Google Scholar 

  147. Vaziri, M., Tomsovic, K., Bose, A.: Numerical analyses of a directed graph formulation of the multistage distribution expansion problem. IEEE Trans. Power Deliv. 19(3), 1348–1354 (2004b). https://doi.org/10.1109/TPWRD.2004.829948

    Article  Google Scholar 

  148. Veeramsetty, V., Venkaiah, C., Kumar, D.M.V.: Hybrid genetic dragonfly algorithm based optimal power flow for computing lmp at dg buses for reliability improvement. Energy Syst. (2017). https://doi.org/10.1007/s12667-017-0268-2

  149. Vita, V., Ekonomou, L., Christodoulou, C.A.: The impact of distributed generation to the lightning protection of modern distribution lines. Energy Syst. 7(2), 357–364 (2016). https://doi.org/10.1007/s12667-015-0175-3

    Article  Google Scholar 

  150. Wang, Z., Liu, H., Yu, D., Wang, X., Song, H.: A practical approach to the conductor size selection in planning radial distribution systems. IEEE Trans. Power Deliv. 15(1), 350–354 (2000). https://doi.org/10.1109/61.847272

    Article  Google Scholar 

  151. Xi, X., Sioshansi, R., Marano, V.: A stochastic dynamic programming model for co-optimization of distributed energy storage. Energy Syst. 5(3), 475–505 (2014). https://doi.org/10.1007/s12667-013-0100-6

    Article  Google Scholar 

  152. Xing, H., Sun, X.: Distributed generation locating and sizing in active distribution network considering network reconfiguration. IEEE Access 5, 14,768–14,774 (2017). https://doi.org/10.1109/ACCESS.2017.2732353

    Article  Google Scholar 

  153. Xing, H., Cheng, H., Zhang, Y., Zeng, P.: Active distribution network expansion planning integrating dispersed energy storage systems. IET Gen. Transm. Distrib. 10(3), 638–644 (2016). https://doi.org/10.1049/iet-gtd.2015.0411

    Article  Google Scholar 

  154. Xu, Y., Dong, Z.Y., Zhang, R., Hill, D.J.: Multi-timescale coordinated voltage/var control of high renewable-penetrated distribution systems. IEEE Trans. Power Syst. 32(6), 4398–4408 (2017). https://doi.org/10.1109/TPWRS.2017.2669343

    Article  Google Scholar 

  155. Yang, F., Li, Z.: Improve distribution system energy efficiency with coordinated reactive power control. IEEE Trans. Power Syst. 31(4), 2518–2525 (2016). https://doi.org/10.1109/TPWRS.2015.2477378

    Article  Google Scholar 

  156. Ziari, I., Ledwich, G., Ghosh, A.: Optimal voltage support mechanism in distribution networks. IET Gen. Transm. Distrib. 5(1), 127–135 (2011). https://doi.org/10.1049/iet-gtd.2010.0277

    Article  Google Scholar 

  157. Ziari, I., Ledwich, G., Ghosh, A., Platt, G.: Optimal distribution network reinforcement considering load growth, line loss, and reliability. IEEE Trans. Power Syst. 28(2), 587–597 (2013). https://doi.org/10.1109/TPWRS.2012.2211626

    Article  Google Scholar 

Download references

Acknowledgements

Work of P.M. Pardalos is partially supported by the Paul and Heidi Brown Preeminent Professorship at ISE, University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Resener.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resener, M., Haffner, S., Pereira, L.A. et al. Optimization techniques applied to planning of electric power distribution systems: a bibliographic survey. Energy Syst 9, 473–509 (2018). https://doi.org/10.1007/s12667-018-0276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-018-0276-x

Keywords

Navigation